Publications by authors named "Fiona M Soper"

Tropical ecosystems face escalating global change. These shifts can disrupt tropical forests' carbon (C) balance and impact root dynamics. Since roots perform essential functions such as resource acquisition and tissue protection, root responses can inform about the strategies and vulnerabilities of ecosystems facing present and future global changes.

View Article and Find Full Text PDF

Plants express diverse nutrient use and acquisition traits, but it is unclear how trait combinations at the species level are constrained by phylogeny, trait coordination, or trade-offs in resource investment. One trait - nitrogen (N) fixation - is assumed to correlate with other traits and used to define plant functional groups, despite potential confounding effects of phylogeny. We quantified growth, carbon metabolism, fixation rate, root phosphatase activity (RPA), mycorrhizal colonization, and leaf and root morphology/chemistry across 22 species of fixing and nonfixing tropical Fabaceae trees under common conditions.

View Article and Find Full Text PDF

Tropical forests are often characterized by low soil phosphorus (P) availability, suggesting that P limits plant performance. However, how seedlings from different functional types respond to soil P availability is poorly known but important for understanding and modeling forest dynamics under changing environmental conditions. We grew four nitrogen (N)-fixing Fabaceae and seven diverse non-N-fixing tropical dry forest tree species in a shade house under three P fertilization treatments and evaluated carbon (C) allocation responses, P demand, P-use, investment in P acquisition traits, and correlations among P acquisition traits.

View Article and Find Full Text PDF

Plant element stoichiometry and stoichiometric flexibility strongly regulate ecosystem responses to global change. Here, we tested three potential mechanistic drivers (climate, soil nutrients, and plant taxonomy) of both using paired foliar and soil nutrient data from terrestrial forested National Ecological Observatory Network sites across the USA. We found that broad patterns of foliar nitrogen (N) and foliar phosphorus (P) are explained by different mechanisms.

View Article and Find Full Text PDF

Natural isotope variation forms a mosaic of isotopically distinct pools across the biosphere and flows between pools integrate plant ecology with global biogeochemical cycling. Carbon, nitrogen, and water isotopic ratios (among others) can be measured in plant tissues, at root and foliar interfaces, and in adjacent atmospheric, water, and soil environments. Natural abundance isotopes provide ecological insight to complement and enhance biogeochemical research, such as understanding the physiological conditions during photosynthetic assimilation (e.

View Article and Find Full Text PDF

Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage, and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e.

View Article and Find Full Text PDF

Though tropical forest ecosystems are among the largest natural sources of the potent greenhouse gas nitrous oxide (NO), the spatial distribution of emissions across landscapes is often poorly resolved. Leaf cutter ants (LCA; Atta and Acromyrmex, Myrmicinae) are dominant herbivores throughout Central and South America, and influence multiple aspects of forest structure and function. In particular, their foraging creates spatial heterogeneity by concentrating large quantities of organic matter (including nitrogen, N) from the surrounding canopy into their colonies, and ultimately into colony refuse dumps.

View Article and Find Full Text PDF

High rates of land conversion and land use change have vastly increased the proportion of secondary forest in the lowland tropics relative to mature forest. As secondary forests recover following abandonment, nitrogen (N) and phosphorus (P) must be present in sufficient quantities to sustain high rates of net primary production and to replenish the nutrients lost during land use prior to secondary forest establishment. Biogeochemical theory and results from individual studies suggest that N can recuperate during secondary forest recovery, especially relative to P.

View Article and Find Full Text PDF

Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote-sensing image spectroscopy, correlates with patterns of soil N O emission from a lowland tropical rainforest.

View Article and Find Full Text PDF

Water and nitrogen (N) interact to influence soil N cycling and plant N acquisition. We studied indices of soil N availability and acquisition by woody plant taxa with distinct nutritional specialisations along a north Australian rainfall gradient from monsoonal savanna (1,600-1,300 mm annual rainfall) to semi-arid woodland (600-250 mm). Aridity resulted in increased 'openness' of N cycling, indicated by increasing δ(15)N(soil) and nitrate:ammonium ratios, as plant communities transitioned from N to water limitation.

View Article and Find Full Text PDF

Biological nitrogen fixation (BNF) in woody plants is often investigated using foliar measurements of δ(15) N and is of particular interest in ecosystems experiencing increases in BNF due to woody plant encroachment. We sampled δ(15) N along the entire N uptake pathway including soil solution, xylem sap and foliage to (1) test assumptions inherent to the use of foliar δ(15) N as a proxy for BNF; (2) determine whether seasonal divergences occur between δ(15) Nxylem sap and δ(15) Nsoil inorganic N that could be used to infer variation in BNF; and (3) assess patterns of δ(15) N with tree age as indicators of shifting BNF or N cycling. Measurements of woody N-fixing Prosopis glandulosa and paired reference non-fixing Zanthoxylum fagara at three seasonal time points showed that δ(15) Nsoil inorganic N varied temporally and spatially between species.

View Article and Find Full Text PDF

While importance of amino acids as a nitrogen source for plants is increasingly recognised, other organic N sources including small peptides have received less attention. We assessed the capacity of functionally different species, annual and nonmycorrhizal Arabidopsis thaliana (L.) Heynh.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqaus7fe04ki9utb5pf33hrv6u4fbvo5a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once