Providence virus (PrV) is a member of the family Tetraviridae, a family of small, positive-sense, ssRNA viruses that exclusively infect lepidopteran insects. PrV is the only known tetravirus that replicates in tissue culture. We have analysed the genome and characterized the viral translation products, showing that PrV has a monopartite genome encoding three ORFs: (i) p130, unique to PrV and of unknown function; (ii) p104, which contains a read-through stop signal, producing an N-terminal product of 40 kDa (p40) and (iii) the capsid protein precursor (p81).
View Article and Find Full Text PDFThe T = 4 tetravirus and T = 3 nodavirus capsid proteins undergo closely similar autoproteolysis to produce the N-terminal beta and C-terminal, lipophilic gamma polypeptides. The gamma peptides and the N termini of beta also act as molecular switches that determine their quasi equivalent capsid structures. The crystal structure of Providence virus (PrV), only the second of a tetravirus (the first was NomegaV), reveals conserved folds and cleavage sites, but the protein termini have completely different structures and the opposite functions of those in NomegaV.
View Article and Find Full Text PDFWe identified a new member of the Tetraviridae, Providence virus (PrV), persistently infecting a midgut cell line derived from the corn earworm (Helicoverpa zea). Virus purified from these cells also productively infected a H. zea fat body cell line, and a cell line from whole embryos of the beet armyworm, Spodoptera exigua.
View Article and Find Full Text PDFTemplate-dependent polynucleotide synthesis is catalyzed by enzymes whose core component includes a ubiquitous alphabeta palm subdomain comprising A, B and C sequence motifs crucial for catalysis. Due to its unique, universal conservation in all RNA viruses, the palm subdomain of RNA-dependent RNA polymerases (RdRps) is widely used for evolutionary and taxonomic inferences. We report here the results of elaborated computer-assisted analysis of newly sequenced replicases from Thosea asigna virus (TaV) and the closely related Euprosterna elaeasa virus (EeV), insect-specific ssRNA+ viruses, which revise a capsid-based classification of these viruses with tetraviruses, an Alphavirus-like family.
View Article and Find Full Text PDFThosea asigna virus (TaV), a putative member of the genus Betatetravirus of the family Tetraviridae, is predicted to have a novel capsid expression strategy compared with other characterized tetraviruses. The capsid precursor protein is cleaved twice to generate three proteins. Two of the proteins, L (58.
View Article and Find Full Text PDF