Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn's disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences.
View Article and Find Full Text PDFAlthough intestinal epithelial cells (IECs) can express major histocompatibility complex class II (MHC II), especially during intestinal inflammation, it remains unclear if antigen presentation by IECs favors pro- or anti-inflammatory CD4 T-cell responses. Using selective gene ablation of MHC II in IECs and IEC organoid cultures, we assessed the impact of MHC II expression by IECs on CD4 T-cell responses and disease outcomes in response to enteric bacterial pathogens. We found that intestinal bacterial infections elicit inflammatory cues that greatly increase expression of MHC II processing and presentation molecules in colonic IECs.
View Article and Find Full Text PDFCurrent inflammatory bowel disease (IBD) therapies are ineffective in a high proportion of patients. Combining bulk and single-cell transcriptomics, quantitative histopathology and in situ localization across three cohorts of patients with IBD (total n = 376), we identify coexpressed gene modules within the heterogeneous tissular inflammatory response in IBD that map to distinct histopathological and cellular features (pathotypes). One of these pathotypes is defined by high neutrophil infiltration, activation of fibroblasts and vascular remodeling at sites of deep ulceration.
View Article and Find Full Text PDFT cell cross-reactivity ensures that diverse pathogen-derived epitopes encountered during a lifetime are recognized by the available TCR repertoire. A feature of cross-reactivity where previous exposure to one microbe can alter immunity to subsequent, non-related pathogens has been mainly explored for viruses. Yet cross-reactivity to additional microbes is important to consider, especially in HIV infection where gut-intestinal barrier dysfunction could facilitate T cell exposure to commensal/pathogenic microbes.
View Article and Find Full Text PDFMononuclear phagocytes (MNPs) are vital for maintaining intestinal homeostasis but, in response to acute microbial stimulation, can also trigger immunopathology, accelerating recruitment of Ly6C monocytes to the gut. The regulators that control monocyte tissue adaptation in the gut remain poorly understood. Interferon regulatory factor 5 (IRF5) is a transcription factor previously shown to play a key role in maintaining the inflammatory phenotype of macrophages.
View Article and Find Full Text PDFSemin Immunol
November 2013
The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota.
View Article and Find Full Text PDFA fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses.
View Article and Find Full Text PDFChronic inflammation of the intestine has been associated with an elevated risk of developing colorectal cancer. Recent association studies have highlighted the role of genetic predisposition in the etiology of colitis and started to unravel its complexity. However, the genetic factors influencing the progression from colon inflammation to tumorigenesis are not known.
View Article and Find Full Text PDFBackground & Aims: Many models of autoimmunity are associated with lymphopenia. Most involve a T-helper cell (Th)1-type disease, including the diabetic BioBreeding (BB) rat. To investigate the roles of identified susceptibility loci in disease pathogenesis, we bred PVG-RT1(u), lymphopenia (lyp)/lyp rats, congenic for the iddm1 (RT1(u)) and iddm2 (lyp, Gimap5(-/-)) diabetes susceptibility loci on the PVG background.
View Article and Find Full Text PDFRegulatory T cells (Treg) provide protection from autoimmune disease, graft-versus-host disease, transplant rejection and overwhelming tissue destruction during infections. Conversely, high Treg numbers enable cancer cells to evade the host immune response. Thus, Treg are seen as an important tool to manipulate the immune response.
View Article and Find Full Text PDF