Crop productivity was transformed by incorporating dwarfing genes that made plants smaller and less competitive (more cooperative). Beyond such major shifts in plant size, however, it is not clear how much variation in competitiveness remains and how to find its genetic basis. We performed plant density experiments, using 484 lines of the multi-parent advanced generation inter-cross population, to compare methods for mapping the genetic basis of plant competitiveness.
View Article and Find Full Text PDFThe 3D analysis of plants has become increasingly effective in modeling the relative structure of organs and other traits of interest. In this paper, we introduce a novel pattern-based deep neural network, Pattern-Net, for segmentation of point clouds of wheat. This study is the first to segment the point clouds of wheat into defined organs and to analyse their traits directly in 3D space.
View Article and Find Full Text PDFSci Rep
January 2020
Wheat plants growing under Mediterranean rain-fed conditions are exposed to water deficit, particularly during the grain filling period, and this can lead to a strong reduction in grain yield (GY). This study examines the effects of water deficit after during the grain filling period on photosynthetic and water-use efficiencies at the leaf and whole-plant level for 14 bread wheat genotypes grown in pots under glasshouse conditions. Two glasshouse experiments were conducted, one in a conventional glasshouse at the Universidad de Talca, Chile (Experiment 1), and another at the National Plant Phenomics Centre (NPPC), Aberystwyth, UK (Experiment 2), in 2015.
View Article and Find Full Text PDFBackground And Aims: The cultivation of dedicated biomass crops, including miscanthus, on marginal land provides a promising approach to the reduction of dependency on fossil fuels. However, little is known about the impact of environmental stresses often experienced on lower-grade agricultural land on cell-wall quality traits in miscanthus biomass crops. In this study, three different miscanthus genotypes were exposed to drought stress and nutrient stress, both separately and in combination, with the aim of evaluating their impact on plant growth and cell-wall properties.
View Article and Find Full Text PDFDrought is an important environmental stress limiting the productivity of major crops worldwide. Understanding drought tolerance and possible mechanisms for improving drought resistance is therefore a prerequisite to develop drought-tolerant crops that produce significant yields with reduced amounts of water. (Brachypodium) is a key model species for cereals, forage grasses, and energy grasses.
View Article and Find Full Text PDFThe domestication of plants is underscored by the selection of agriculturally favorable developmental traits, including flowering time, which resulted in the creation of varieties with altered growth habits. Research into the pathways underlying these growth habits in cereals has highlighted the role of three main flowering regulators: VERNALIZATION1 (VRN1), VRN2, and FLOWERING LOCUS T (FT). Previous reverse genetic studies suggested that the roles of VRN1 and FT are conserved in Brachypodium distachyon yet identified considerable ambiguity surrounding the role of VRN2 To investigate the natural diversity governing flowering time pathways in a nondomesticated grass, the reference B.
View Article and Find Full Text PDFEukaryotic initiation factor 4A (eIF4A) is a highly conserved RNA-stimulated ATPase and helicase involved in the initiation of messenger RNA translation. Previously, we found that eIF4A interacts with cyclin-dependent kinase A (CDKA), the plant ortholog of mammalian CDK1. Here, we show that this interaction occurs only in proliferating cells where the two proteins coassociate with 5'-cap-binding protein complexes, eIF4F or the plant-specific eIFiso4F.
View Article and Find Full Text PDF