Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local-scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD-related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local-scale CDD and its causes, including species-specific antagonistic and mutualistic interactions.
View Article and Find Full Text PDFConspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence.
View Article and Find Full Text PDFTree biomass allocation to leaves, roots, and wood affects the residence time of carbon in forests, with potentially dramatic implications for ecosystem carbon storage. However, drivers of tree biomass allocation remain poorly quantified. Using a combination of global data sets, we tested the relative importance of climate, leaf habit, and tree mycorrhizal associations on biomass allocation.
View Article and Find Full Text PDFPremise: Plant performance and functional traits vary considerably within species, particularly in response to environmental variation. Plant responses may reflect life-history trade-offs, such as between resource acquisition and resource conservation. Larger seeds may buffer young plants from the negative effects of environmental variation, such as limitations in nutrients or water.
View Article and Find Full Text PDF