Publications by authors named "Fiona Flett"

Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA 3'-end processing enzyme that repairs topoisomerase 1B-induced DNA damage. We use a new tool combining site-specific DNA-protein cross-linking with mass spectrometry to identify Tdp1 interactions with DNA. A conserved phenylalanine (F259) of Tdp1, required for efficient DNA processing in biochemical assays, cross-links to defined positions in DNA substrates.

View Article and Find Full Text PDF

Cross-linking of nucleic acids to proteins in combination with mass spectrometry permits the precise identification of interacting residues between nucleic acid-protein complexes. However, the mass spectrometric identification and characterization of cross-linked nucleic acid-protein heteroconjugates within a complex sample is challenging. Here we establish a novel enzymatic differential O/O-labeling approach, which uniquely labels heteroconjugates.

View Article and Find Full Text PDF

UV cross-linking of nucleic acids to proteins in combination with mass spectrometry is a powerful technique to identify proteins, peptides, and the amino acids involved in intermolecular interactions within nucleic acid-protein complexes. However, the mass spectrometric identification of cross-linked nucleic acid-protein heteroconjugates in complex mixtures and MS/MS characterization of the specific sites of cross-linking is extremely challenging. As a tool for the optimization of sample preparation, ionization, fragmentation, and detection by mass spectrometry, novel synthetic DNA-peptide heteroconjugates were generated to act as mimics of UV cross-linked heteroconjugates.

View Article and Find Full Text PDF

Denaturing urea polyacrylamide gel electrophoresis (PAGE) allows the separation of linear single-stranded DNA molecules based on molecular weight. This method can be used to analyze or purify short synthesized DNA oligonucleotides or products from enzymatic reactions.In this chapter we describe how to prepare and how to run these high concentration polyacrylamide gels.

View Article and Find Full Text PDF

Identification of small-molecule inhibitors by high-throughput screening necessitates the development of robust, reproducible and cost-effective assays. The assay approach adopted may utilize isolated proteins or whole cells containing the target of interest. To enable protein-based assays, the baculovirus expression system is commonly used for generation and isolation of recombinant proteins.

View Article and Find Full Text PDF

The high hemeozoin (beta-hemeatin) content of Plasmodium falciparum lysates imposes severe limitations on the analysis of the malarial proteome, in particular compromising the loading capacities of two-dimensional gels. Here we report on the adaptation of a recently developed solution-phase isoelectric focusing-based fractionation technique as a prefractionation strategy for efficient containment of hemeoglobin-derived products and complexity reduction, to facilitate the high-resolution gel-based quantitative analysis of plasmodial lysates.

View Article and Find Full Text PDF

Background: In Streptomyces coelicolor, bldA encodes the only tRNA for a rare leucine codon, UUA. This tRNA is unnecessary for growth, but is required for some aspects of secondary metabolism and morphological development. We describe a transcriptomic and proteomic analysis of the effects of deleting bldA on cellular processes during submerged culture: conditions relevant to the industrial production of antibiotics.

View Article and Find Full Text PDF

Nonribosomal peptides contain a wide range of unusual non-proteinogenic amino acid residues. As a result, these complex natural products are amongst the most structurally diverse secondary metabolites in nature, and possess a broad spectrum of biological activities. beta-Hydroxylation of amino acid precursors or peptidyl residues and their subsequent processing by downstream tailoring enzymes are some of the most common themes in the biosynthetic diversification of these therapeutically important peptides.

View Article and Find Full Text PDF

Site-directed mutagenesis of nonribosomal peptide synthetase (NRPS) adenylation (A) domains was investigated as a means to engineer new calcium-dependent antibiotics (CDA) in Streptomyces coelicolor. Single- and double-point mutants of the CDA NRPS module 7, A-domain were generated, which were predicted to alter the specificity of this domain from Asp to Asn. The double-point mutant produced a new peptide CDA2a-7N containing Asn at position 7 as expected.

View Article and Find Full Text PDF

The calcium-dependent antibiotic (CDA), from Streptomyces coelicolor, is an acidic lipopeptide comprising an N-terminal 2,3-epoxyhexanoyl fatty acid side chain and several nonproteinogenic amino acid residues. S. coelicolor grown on solid media was shown to produce several previously uncharacterized peptides with C-terminal Z-dehydrotryptophan residues.

View Article and Find Full Text PDF