Publications by authors named "Fiona Fernandes"

Efficient and safe gene delivery is vital for genetic manipulation of stem cells for regenerative medicine. Gold nanoparticles have been used for various biomedical applications in the past, and are currently being researched as transfection agents. In this study, we report a simple one-pot synthesis of positively charged gold nanoparticles functionalized with cysteamine.

View Article and Find Full Text PDF
Article Synopsis
  • Spastic paraplegia 47 (SPG47) results from mutations in the AP4B1 gene, leading to symptoms like progressive spastic paraplegia, developmental delays, intellectual disability, and epilepsy.
  • Researchers used a gene therapy approach with a viral vector (AAV9/hAP4B1) to deliver the correct AP4B1 gene into a mouse model, successfully correcting multiple disease symptoms and restoring protein levels.
  • Preclinical safety studies in non-human primates showed no major side effects, setting the stage for potential clinical trials to treat SPG47 patients.
View Article and Find Full Text PDF

There is an ongoing burden of pneumococcal disease in children despite the use of pneumococcal conjugate vaccines (PCVs). This phase 3, open-label, single-arm, multisite, descriptive study was designed to evaluate the safety and immunogenicity of a 3 + 1 regimen of V114 (VAXNEUVANCE™), a 15-valent PCV, in South Korean infants and toddlers. Adverse events (AEs) were reported for 14 d following any vaccination, and throughout the study period for serious AEs.

View Article and Find Full Text PDF

Novel porous nanospheres from areca nuts (ACNPs) were synthesized via one-step pyrolysis without the use of any chemical treatment and the materials were used as adsorbents for the removal of cationic methylene blue (MB) and anionic methyl orange (MO) as well as their binary mixtures. Around, 6-7 tonnes of areca nut biowaste is generated every year which are then burnt due to their slow rate of decomposition resulting in higher carbon footprints. Biosorbents are generally a preferable alternative for dye adsorption but involve chemical modification for surface enhancement and complex sample treatment.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children, resulting in annual epidemics worldwide. INFORM-RSV is a multiyear clinical study designed to describe the global molecular epidemiology of RSV in children under 5 years of age by monitoring temporal and geographical evolution of current circulating RSV strains, F protein antigenic sites, and their relationships with clinical features of RSV disease. During the pilot season (2017-2018), 410 RSV G-F gene sequences were obtained from 476 RSV-positive nasal samples collected from 8 countries (United Kingdom, Spain, The Netherlands, Finland, Japan, Brazil, South Africa, and Australia).

View Article and Find Full Text PDF

Antibiotics revolutionized the treatment of infectious diseases; however, it is now clear that broad-spectrum antibiotics alter the composition and function of the host's microbiome. The microbiome plays a key role in human health, and its perturbation is increasingly recognized as contributing to many human diseases. Widespread broad-spectrum antibiotic use has also resulted in the emergence of multidrug-resistant pathogens, spurring the development of pathogen-specific strategies such as monoclonal antibodies (MAbs) to combat bacterial infection.

View Article and Find Full Text PDF

Stem cell-based regenerative medicine holds exceptional therapeutic potential and hence the development of efficient techniques to enhance control over the rate of differentiation has been the focus of active research. One of the strategies to achieve this involves delivering siRNA into stem cells and exploiting the RNA interference (RNAi) mechanism. Transport of siRNA across the cell membrane is a challenge due to its anionic property, especially in primary human cells and stem cells.

View Article and Find Full Text PDF

Background: The trans-fat containing AMLN (amylin liver non-alcoholic steatohepatitis, NASH) diet has been extensively validated in C57BL/6J mice with or without the Lep/Lep () mutation in the leptin gene for reliably inducing metabolic and liver histopathological changes recapitulating hallmarks of NASH. Due to a recent ban on trans-fats as food additive, there is a marked need for developing a new diet capable of promoting a compatible level of disease in and C57BL/6J mice.

Aim: To develop a biopsy-confirmed mouse model of NASH based on an obesogenic diet with trans-fat substituted by saturated fat.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children. To date, no vaccine is approved for the broad population of healthy infants. MEDI8897, a potent anti-RSV fusion antibody with extended serum half-life, is currently under clinical investigation as a potential passive RSV vaccine for all infants.

View Article and Find Full Text PDF

We previously demonstrated that ectodomain residue Asp286 in N2 neuraminidase (NA; Asp268 in N1 NA) present in budding-capable NA proteins contributes to productive NA plasma membrane transport partly by mediating escape from tetherin restriction [Yondola MA, Fernandes F, Belicha-Villanueva A, Uccelini M, Gao Q, Carter C, et al. (2011). Budding capability of the influenza virus neuraminidase can be modulated by tetherin.

View Article and Find Full Text PDF

We have determined that, in addition to its receptor-destroying activity, the influenza virus neuraminidase is capable of efficiently forming virus-like particles (VLPs) when expressed individually from plasmid DNA. This observation applies to both human subtypes of neuraminidase, N1 and N2. However, it is not found with every strain of influenza virus.

View Article and Find Full Text PDF

Phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2) ], the predominant phosphoinositide (PI) on the plasma membrane, binds the matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV) with similar affinities in vitro. Interaction with PI(4,5)P(2) is critical for HIV-1 assembly on the plasma membrane. EIAV has been shown to localize in internal compartments; hence, the significance of its interaction with PI(4,5)P(2) is unclear.

View Article and Find Full Text PDF

Background: Hepatitis C Virus (HCV) infection is a leading indication for liver transplantation. HCV infection reoccurs almost universally post transplant, decreasing both graft longevity and patient survival. The immunosuppressant, cyclosporine A (CsA) has potent anti-HCV activity towards both HCV replicons and the genotype 2a cell culture infectious virus.

View Article and Find Full Text PDF

Unlabelled: HCV re-occurs after liver transplantation and increases mortality. Cyclosporine, but not tacrolimus, has potent antiviral effects against HCV replication in cell culture. To determine the conditions, if any, under which HCV is susceptible to cyclosporine in vivo, we selected for cyclosporine-resistant mutant HCV in vitro.

View Article and Find Full Text PDF

Restricted replication in the respiratory tract of rhesus monkeys is an intrinsic property of bovine parainfluenza virus type 3 (bPIV-3) strains. This host range phenotype of bPIV-3 has been utilized as a marker to evaluate the attenuation of bPIV-3 vaccines for human use. Two safety, immunogenicity and efficacy studies in primates evaluated and compared three human parainfluenza virus type 3 (hPIV-3) vaccine candidates: biologically derived bPIV-3, a plasmid-derived bPIV-3 (r-bPIV-3) and a chimeric bovine/human PIV-3 (b/hPIV-3).

View Article and Find Full Text PDF

A live attenuated bovine parainfluenza virus type 3 (PIV3), harboring the fusion (F) and hemagglutinin-neuraminidase (HN) genes of human PIV3, was used as a virus vector to express surface glycoproteins derived from two human pathogens, human metapneumovirus (hMPV) and respiratory syncytial virus (RSV). RSV and hMPV are both paramyxoviruses that cause respiratory disease in young children, the elderly, and immunocompromised individuals. RSV has been known for decades to cause acute lower respiratory tract infections in young children, which often result in hospitalization, while hMPV has only been recently identified as a novel human respiratory pathogen.

View Article and Find Full Text PDF

Papillomaviruses normally replicate in stratified squamous epithelial tissues of their mammalian hosts, in which the viral genome is found as a nuclear plasmid. Two viral proteins, E1, a helicase, and E2, a transcriptional activator and plasmid maintenance factor, are known to contribute to the episomal replication of the viral genome. Recently, our laboratory discovered that papillomaviruses can also replicate in an E1-independent manner in mammalian cells (K.

View Article and Find Full Text PDF