Not discounting the important foetal or placental contribution, the endometrium is a key determinant of pregnancy outcomes. Given the inherently linked processes of menstruation, pregnancy and parturition with the endometrium, further understanding of menstruation will help to elucidate the maternal contribution to pregnancy. Endometrial health can be assessed via menstrual history and menstrual fluid, a cyclically shed, easily and non-invasively accessible biological sample that represents the distinct, heterogeneous composition of the endometrial environment.
View Article and Find Full Text PDFIntroduction: Current research aimed at understanding and preventing stillbirth focuses almost exclusively on the role of the placenta. The underlying origins of poor placental function leading to stillbirth, however, remain poorly understood. There is evidence demonstrating that the endometrial environment in which the embryo implants impacts not only the establishment of pregnancy but also the development of some pregnancy outcomes.
View Article and Find Full Text PDFFor pregnancy to be established, a viable blastocyst must successfully interact with a receptive uterine lining (endometrium) to facilitate implantation and placenta formation and enable ongoing pregnancy. The limitations to pregnancy success caused by embryonic defects are well known and have been largely overcome in recent decades with the rise of in vitro fertilization (IVF) and assisted reproductive technologies. As yet, however, the field has not overcome the limitations caused by an inadequately receptive endometrium, thus resulting in stagnating IVF success rates.
View Article and Find Full Text PDFFemale cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells.
View Article and Find Full Text PDFEndometriosis is a serious, chronic disorder where endometrial tissue grows outside the uterus, causing severe pelvic pain and infertility. It affects 11% of women. Endometriosis is a multifactorial disorder of unclear etiology, although retrograde menstruation plays a major role.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2022
Decidualization is the hormone-dependent process of endometrial remodeling that is essential for fertility and reproductive health. It is characterized by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodeling. Deficits in decidualization are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia.
View Article and Find Full Text PDFFront Reprod Health
January 2022
The human endometrium is a remarkable tissue, undergoing ~450 cycles of proliferation, differentiation, shedding (menstruation), repair, and regeneration over a woman's reproductive lifespan. Post-menstrual repair is an extremely rapid and scar-free process, with re-epithelialization of the luminal epithelium completed within 48 h of initiation of shedding. Following menstruation, the functionalis grows from the residual basalis layer during the proliferative phase under the influence of rising circulating estrogen levels.
View Article and Find Full Text PDFEndometrial organoids (EMO) are an important tool for gynecological research but have been limited by generation from (1) invasively acquired tissues and thus advanced disease states and (2) from women who are not taking hormones, thus excluding 50% of the female reproductive-aged population. We sought to overcome these limitations by generating organoids from (1) menstrual fluid (MF; MFO) using a method that enables the concurrent isolation of menstrual fluid supernatant, stromal cells, and leukocytes and (2) from biopsies and hysterectomy samples from women taking hormonal medication (EMO-H). MF was collected in a menstrual cup for 4-6 h on day 2 of menstruation.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) that meet the International Society for Cellular Therapy (ISCT) criteria are obtained from placental tissue by plastic adherence. Historically, no known single marker was available for isolating placental MSCs (pMSCs) from the decidua basalis. As the decidua basalis is derived from the regenerative endometrium, we hypothesised that SUSD2, an endometrial perivascular MSC marker, would purify maternal perivascular pMSC.
View Article and Find Full Text PDFThe human endometrium undergoes approximately 450 cycles of proliferation, differentiation, shedding and regeneration over a woman's reproductive lifetime. The regenerative capacity of the endometrium is attributed to stem/progenitor cells residing in the basalis layer of the tissue. Mesenchymal stem cells have been extensively studied in the endometrium, whereas endometrial epithelial stem/progenitor cells have remained more elusive.
View Article and Find Full Text PDFPurpose: Transvaginal meshes for the treatment of Pelvic Organ Prolapse (POP) have been associated with severe adverse events and have been banned for clinical use in many countries. We recently reported the design of degradable poly L-lactic acid-co-poly ε-caprolactone nanofibrous mesh (P nanomesh) bioengineered with endometrial mesenchymal stem/stromal cells (eMSC) for POP repair. We showed that such bioengineered meshes had high tissue integration as well as immunomodulatory effects .
View Article and Find Full Text PDFStudy Question: Does the newly discovered menstruating spiny mouse exhibit behavioural and metabolic changes in correlation with premenstrual phases of the menstrual cycle?
Summary Answer: This is the first report of cycle variability in the exploratory and interactive behaviour, and food consumption in menstruating spiny mice, and demonstrates that physiological changes are also dependent on within-subject variation.
What Is Known Already: Premenstrual syndrome (PMS) is a prominent cyclic disorder that affects millions of women worldwide. More than 70% of women endure symptoms of impending menstruation, such as bloating, abdominal cramping and nausea to some degree.
Aim: To develop a patient derived xenograft (PDX) model of cervical cancer and cervical dysplasia using the subrenal capsule.
Methods: Cervical cancer (12 Squamous Cell Carcinoma, 1 Adenocarcinoma, 1 Adenosquamous Carcinoma), 7 cervical dysplasia biopsy and normal cervical tissues were transplanted beneath the renal capsule of immunocompromised NOD/SCID/gamma mice. Resulting tumours were harvested and portions serially transplanted into new recipient mice for up to three in vivo passages.
The regenerative capacity of the endometrium has been attributed to resident stem/progenitor cells. A number of stem/progenitor markers have been reported for human endometrial stem/progenitor cells; however, the lack of convenient markers in the mouse has made experimental investigation into endometrial regeneration difficult. We recently identified endometrial epithelial, endothelial, and immune cells, which express a reporter for the stem/progenitor marker, mouse telomerase reverse transcriptase (mTert).
View Article and Find Full Text PDFWe recently discovered the first known menstruating rodent. With the exception of four bats and the elephant shrew, the common spiny mouse () is the only species outside the primate order to exhibit menses. There are few widely accepted theories on why menstruation developed as the preferred reproductive strategy of these select mammals, all of which reference the evolution of spontaneous decidualisation prior to menstrual shedding.
View Article and Find Full Text PDFBest Pract Res Clin Obstet Gynaecol
July 2018
Human endometrium regenerates on a cyclical basis each month, likely mediated by endometrial stem/progenitor cells. Several types of stem/progenitor cells have been identified: CD140bCD146 or SUSD2 endometrial mesenchymal stem cells (eMSCs), N-cadherin endometrial epithelial progenitor cells (eEPs), and side population (SP) cells, a heterogeneous population predominantly comprising endothelial cells. eMSCs reside in a perivascular niche and likely mediate angiogenesis and stromal regeneration.
View Article and Find Full Text PDFEndometrial cancer (EC) is the most common gynaecological malignancy. Obesity is a major risk factor for EC and is associated with elevated cholesterol. 27-hydroxycholesterol (27HC) is a cholesterol metabolite that functions as an endogenous agonist for Liver X receptor (LXR) and a selective oestrogen receptor modulator (SERM).
View Article and Find Full Text PDFStudy Question: Is there a specific surface marker that identifies human endometrial epithelial progenitor cells with adult stem cell activity using in vitro assays?
Summary Answer: N-cadherin isolates clonogenic, self-renewing human endometrial epithelial progenitor cells with high proliferative potential that differentiate into cytokeratin+ gland-like structures in vitro and identifies their location in some cells of gland profiles predominantly in basalis endometrium adjacent to the myometrium.
What Is Known Already: Human endometrium contains a small population of clonogenic, self-renewing epithelial cells with high proliferative potential that differentiate into large gland-like structures, but their identity and location is unknown. Stage-specific embryonic antigen-1 (SSEA-1) distinguishes the epithelium of basalis from functionalis and is a marker of human post-menopausal (Post-M) endometrial epithelium.
Studies from five independent laboratories conclude that bone marrow stem cells transdifferentiate into endometrial stroma, epithelium, and endothelium. We investigated the nature of bone marrow-derived cells in the mouse endometrium by reconstituting irradiated wild type recipients with bone marrow containing transgenic mTert-green fluorescent protein (GFP) or chicken β-actin (Ch β-actin)-GFP reporters. mTert-GFP is a telomerase marker identifying hematopoietic stem cells and subpopulations of epithelial, endothelial, and immune cells in the endometrium.
View Article and Find Full Text PDFIn women, endometrial breakdown, which is experienced as menstruation, is characterised by high concentrations of inflammatory mediators and immune cells which account for ~40% of the stromal compartment during tissue shedding. These inflammatory cells are known to play a pivotal role in tissue breakdown but their contribution to the rapid scarless repair of endometrium remains poorly understood. In the current study we used a mouse model of menstruation to investigate dynamic changes in mononuclear phagocytes during endometrial repair and remodelling.
View Article and Find Full Text PDFThe human endometrium undergoes regular cycles of synchronous tissue shedding (wounding) and repair that occur during menstruation before estrogen-dependent regeneration. Endometrial repair is normally both rapid and scarless. Androgens regulate cutaneous wound healing, but their role in endometrial repair is unknown.
View Article and Find Full Text PDFThe endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood.
View Article and Find Full Text PDF