Aims: The purpose of the current study is to 1) examine the beneficial effects of moderate levels of physical activity (PA) on functional and biochemical markers of the cardiorespiratory system, 2) establish the detrimental effects of a single, daily particulate matter (PM) exposure event on cardiorespiratory function and 3) determine if exercising during daily PM exposure increases the deleterious effects caused by PM exposure due to increased inhalation of particulates on cardiorespiratory function.
Methods: Four groups of 16 rats were used: control (CON), PA, PM exposed and PA combined with PM exposure (PA + PM). Animals were purchased at 4 weeks old.
The cardioprotective effects of resveratrol are well established in animal models of metabolic disease but are yet to be investigated in a combined model of hypertension and diabetes. This study investigated the ability of resveratrol's antioxidant and anti-inflammatory effects to prevent cardiovascular complications in the spontaneously hypertensive streptozotocin-induced diabetic rat. Diabetes was induced in eight-week-old male spontaneously hypertensive rats via a single intravenous injection of streptozotocin.
View Article and Find Full Text PDFThe mechanisms by which resveratrol and nebivolol induce vasodilation are not clearly understood. It has been postulated that both agents stimulate the production of nitric oxide; however, this remains to be conclusively established. The major aim of this study was to examine the vasodilatory and antiarrhythmic effects of both resveratrol and nebivolol and to provide further insight into possible mechanisms of action.
View Article and Find Full Text PDFBackground: Both obesity and a lack of physical activity have been associated with an elevated risk of cardiovascular disease (CVD). The incidence of obesity is increasing, especially in juvenile-adolescents. While there is limited research examining the chronic effects of obesity in adolescent humans and animal models of this condition, little is also known concerning how moderate physical activity might prevent or attenuate secondary cardiovascular complications induced by obesity during adolescence.
View Article and Find Full Text PDFAntihypertensive and antidiabetic effects of stevia, Stevia rebaudiana (Asteraceae), have been demonstrated in several human and animal models. The current study aims to define stevia's role in modifying the electrophysiological and mechanical properties of cardiomyocytes, blood vessels, and gastrointestinal smooth muscle. Tissues from thoracic aorta, mesenteric arteries, ileum, and left ventricular papillary muscles were excised from 8-week-old healthy Wistar rats.
View Article and Find Full Text PDFIntroduction: Overweight and obesity are highly prevalent in rural areas and pose significant risks to health. The aim of this study was to investigate whether the rural public in central Queensland are aware of the health risks of overweight and to determine whether their perceptions of weight status and methods used to assess weight status correspond with those of health professionals.
Methods: Adults were randomly selected from shoppers in shopping centres in Central Queensland, Australia, to self-complete a questionnaire that assessed participants' understanding of the health risks of overweight, perception of current weight, methods used to assess current weight and understanding of the concepts of body mass index (BMI) and waist-to-hip ratio (WHR).
J Pharmacol Exp Ther
February 2004
Acetylcholine release from cholinergic nerves in the gastrointestinal tract is limited by neuronal M(2) muscarinic receptors. In diabetic animals, M(2) muscarinic receptor function in the ileum is increased, leading to decreased acetylcholine release and smooth muscle contraction in response to nerve stimulation. The mechanisms responsible for increased M(2) muscarinic receptor function are unknown but may contribute to the gastrointestinal dysmotility that occurs frequently in diabetics.
View Article and Find Full Text PDFParasympathetic nerves provide the dominant autonomic innervation of the airways. Release of acetylcholine from parasympathetic nerves activates postjunctional muscarinic receptors present on airway smooth muscle, submucosal glands, and blood vessels to cause bronchoconstriction, mucus secretion, and vasodilatation, respectively. Acetylcholine also feeds back onto prejunctional muscarinic receptors to enhance or inhibit further acetylcholine release.
View Article and Find Full Text PDF1. Release of acetylcholine from parasympathetic nerves is inhibited by neuronal M(2) muscarinic receptors. The effects of streptozotocin-induced diabetes on prejunctional M(2) and postjunctional M(3) muscarinic receptor function in rat trachea and ileum were investigated in vitro.
View Article and Find Full Text PDF