The IRE1α-XBP1s signaling branch of the unfolded protein response is a well-characterized survival pathway that allows cells to adapt to and resolve endoplasmic reticulum stress. Recent data has broadened our understanding of IRE1α-XBP1s signaling beyond a stress response and revealed a physiological mechanism required for the differentiation and maturation of a wide variety of cell types. Here we provide evidence that the IRE1α-XBP1s signaling pathway is required for the proliferation and maturation of basal keratinocytes in the mouse tongue and esophageal epithelium.
View Article and Find Full Text PDFTransforming Growth Factor Beta 1 (TGFβ1) is a multifunctional cytokine that regulates proliferation, apoptosis, and epithelial-mesenchymal transition of epithelial cells. While its role in cancer is well studied, less is known about TGFβ1 and regulation of epithelial development. To address this, we deleted TGFβ1 in basal keratinocytes of stratified squamous epithelia.
View Article and Find Full Text PDFThe unfolded protein response is activated by UVB irradiation, but the role of a key mediator, IRE1α, is not clear. In this study, we show that mice with an epidermal IRE1α deletion are sensitized to UV with increased apoptosis, rapid loss of UV-induced cyclopyrimidine dimer‒positive keratinocytes, and sloughing of the epidermis. In vitro, Ire1α-deficient keratinocytes have increased UVB sensitivity, reduced cyclopyrimidine dimer repair, and reduced accumulation of γH2AX and phosphorylated ATR, suggesting defective activation of nucleotide excision repair.
View Article and Find Full Text PDFCancer is associated with a number of conditions such as hypoxia, nutrient deprivation, cellular redox, and pH changes that result in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) and trigger a stress response known as the unfolded protein response (UPR). The UPR is a conserved cellular survival mechanism mediated by the ER transmembrane proteins activating transcription factor 6, protein kinase-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1α (IRE1α) that act to resolve ER stress and promote cell survival. IRE1α is a kinase/endoribonuclease (RNase) with multiple activities including unconventional splicing of the messenger RNA (mRNA) for the transcription factor X-Box Binding Protein 1 (XBP1), degradation of other mRNAs in a process called regulated IRE1α-dependent decay (RIDD) and activation of a pathway leading to c-Jun N-terminal kinase phosphorylation.
View Article and Find Full Text PDF: The mammalian endoplasmic reticulum (ER) continuously adapts to the cellular secretory load by the activation of an unfolded protein response (UPR). This stress response results in expansion of the ER, upregulation of proteins involved in protein folding and degradation, and attenuation of protein synthesis. The response is orchestrated by three signalling pathways each activated by a specific signal transducer, either inositol requiring enzyme α (IRE1α), double-stranded RNA-activated protein kinase-like ER kinase (PERK) or activating transcription factor 6 (ATF6).
View Article and Find Full Text PDF