Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder.
View Article and Find Full Text PDFPhenotypes observed in a large cohort of patients with cone and cone-rod dystrophies (COD/CORDs) are described based on multimodal retinal imaging features in order to help in analyzing massive next-generation sequencing data. Structural abnormalities of 58 subjects with molecular diagnosis of COD/CORDs were analyzed through specific retinal imaging including spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (BAF/IRAF). Findings were analyzed with the underlying genetic defects.
View Article and Find Full Text PDFInherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown.
View Article and Find Full Text PDFGenetic investigations were performed in three brothers from a consanguineous union, the two oldest diagnosed with rod-cone dystrophy (RCD), the youngest with early-onset cone-rod dystrophy and the two youngest with nephrotic-range proteinuria. Targeted next-generation sequencing did not identify homozygous pathogenic variant in the oldest brother. Whole exome sequencing (WES) applied to the family identified compound heterozygous variants in CC2D2A (c.
View Article and Find Full Text PDFHere we report novel mutations in with the underlying phenotype in a large French cohort with autosomal recessive Stargardt disease. The DNA samples of 397 index subjects were analyzed in exons and flanking intronic regions of (NM_000350.2) by microarray analysis and direct Sanger sequencing.
View Article and Find Full Text PDFMER tyrosine kinase (MERTK) encodes a surface receptor localized at the apical membrane of the retinal pigment epithelium. It plays a critical role in photoreceptor outer segment internalization prior to phagocytosis. Mutations in MERTK have been associated with severe autosomal recessive retinal dystrophies in the RCS rat and in humans.
View Article and Find Full Text PDFPurpose: To report the clinical and genetic findings of one family with autosomal recessive cone dystrophy (CD) and to identify the causative mutation.
Methods: An institutional study of three family members from two generations. The clinical examination included best-corrected Snellen visual acuity measurement, fundoscopy, the Farnsworth D-15 color vision test, a full-field electroretinogram (ERG) that incorporated the International Society for Clinical Electrophysiology of Vision standards and methodology, fundus autofluorescence (FAF) and infrared (IR), and spectral-domain optical coherence tomography (SD-OCT).
Background: Cone and cone-rod dystrophies are clinically and genetically heterogeneous inherited retinal disorders with predominant cone impairment. They should be distinguished from the more common group of rod-cone dystrophies (retinitis pigmentosa) due to their more severe visual prognosis with early central vision loss. The purpose of our study was to document mutation spectrum of a large French cohort of cone and cone-rod dystrophies.
View Article and Find Full Text PDFRod-cone dystrophy (RCD), also known as retinitis pigmentosa, is a progressive inherited retinal disorder characterized by photoreceptor cell death and genetic heterogeneity. Mutations in many genes have been implicated in the pathophysiology of RCD, but several others remain to be identified. Herein, we applied whole-exome sequencing to a consanguineous family with one subject affected with RCD and identified a homozygous nonsense mutation, c.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.