Solid-state batteries based on LiLaZrO (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented.
View Article and Find Full Text PDFIon Beam Analysis (IBA) utilizing MeV ion beams provides valuable insights into surface elemental composition across the entire periodic table. While ion beam measurements have advanced towards high throughput for mapping applications, data analysis has lagged behind due to the challenges posed by large volumes of data and multiple detectors providing diverse analytical information. Traditional physics-based fitting algorithms for these spectra can be time-consuming and prone to local minima traps, often taking days or weeks to complete.
View Article and Find Full Text PDFThe phosphate lithium-ion conductor LiAlTi(PO) (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO (LFP) can be produced by using a scalable tape casting process.
View Article and Find Full Text PDFIn this work, the effects of dopant size and oxidation state on the structure and electrochemical performance of LiNiCoMnO (NCM811) are investigated. It is shown that doping with boron (B) which has a small ionic radius and an oxidation state of 3+, leads to the formation of a boron oxide-containing surface coating (probably LiBO), mainly on the outer surface of the secondary particles. Due to this effect, boron only slightly affects the size of the primary particle and the initial capacity, but significantly improves the capacity retention.
View Article and Find Full Text PDFAll-solid-state lithium batteries are promising candidates for next-generation energy storage systems. Their performance critically depends on the capacity and cycling stability of the cathodic layer. Cells with a garnet LiLaZrO (LLZO) electrolyte can show high areal storage capacity.
View Article and Find Full Text PDFThe garnet-type LiLaZrO (LLZO) ceramic solid electrolyte combines high Li-ion conductivity at room temperature with high chemical stability. Several all-solid-state Li batteries featuring the LLZO electrolyte and the LiCoO (LCO) or LiCoO-LLZO composite cathode were demonstrated. However, all batteries exhibit rapid capacity fading during cycling, which is often attributed to the formation of cracks due to volume expansion and the contraction of LCO.
View Article and Find Full Text PDFSolid electrolyte is the key component in all-solid-state batteries (ASBs). It is required in electrodes to enhance Li-conductivity and can be directly used as a separator. With its high Li-conductivity and chemical stability towards metallic lithium, lithium-stuffed garnet material LiLaZrO (LLZO) is considered one of the most promising solid electrolyte materials for high-energy ceramic ASBs.
View Article and Find Full Text PDFGarnet-based Li-ion conductors are one of the most promising oxide-ceramic solid electrolytes for next-generation Li batteries. However, they undergo a Li /H exchange (LHX) reaction with most protic solvents used in component manufacturing routes and even with moisture in ambient air. These protonated garnets show a lower Li-ionic conductivity, and even if only the surface is protonated, this degraded layer hinders the Li-ion exchange with, for example, a metallic Li anode.
View Article and Find Full Text PDFWe apply high-temperature oxide melt solution calorimetry to assess the thermodynamic properties of the material LiAlTi(PO), which has been broadly recognized as one of the best Li-ion-conducting solid electrolytes of the NASICON family. The experimental results reveal large exothermic enthalpies of formation from binary oxides (Δ) and elements (Δ) for all compositions in the range 0 ≤ ≤ 0.5.
View Article and Find Full Text PDFThe importance of tetraspanin proteins in regulating migration has been demonstrated in many diverse cellular systems. However, the function of the leukocyte-restricted tetraspanin CD53 remains obscure. We therefore hypothesized that CD53 plays a role in regulating leukocyte recruitment and tested this hypothesis by examining responses of CD53-deficient mice to a range of inflammatory stimuli.
View Article and Find Full Text PDFThere is an urgent need for an easily assessable preoperative test to predict postoperative liver function recovery and thereby determine the optimal time point of liver resection, specifically as current markers are often expensive, time consuming, and invasive. Emerging evidence suggests that microRNA (miRNA) signatures represent potent diagnostic, prognostic, and treatment-response biomarkers for several diseases. Using next-generation sequencing as an unbiased systematic approach, 554 miRNAs were detected in preoperative plasma of 21 patients suffering from postoperative liver dysfunction (LD) after liver resection and 27 matched controls.
View Article and Find Full Text PDFPlatelet-leukocyte interactions promote acute glomerulonephritis. However, neither the nature of the interactions between platelets and immune cells nor the capacity of platelets to promote leukocyte activation has been characterized in this condition. We used confocal intravital microscopy to define the interactions of platelets with neutrophils, monocytes, and endothelial cells in glomerular capillaries in mice.
View Article and Find Full Text PDFThe development of high-capacity, high-performance all-solid-state batteries requires the specific design and optimization of its components, especially on the positive electrode side. For the first time, we were able to produce a completely inorganic mixed positive electrode consisting only of LiCoO and Ta-substituted LiLaZrO (LLZ:Ta) without the use of additional sintering aids or conducting additives, which has a high theoretical capacity density of 1 mAh/cm. A true all-solid-state cell composed of a Li metal negative electrode, a LLZ:Ta garnet electrolyte, and a 25 μm thick LLZ:Ta + LiCoO mixed positive electrode was manufactured and characterized.
View Article and Find Full Text PDFAlthough effector CD4 T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 T cells undergo intravascular migration within uninflamed glomeruli.
View Article and Find Full Text PDFThe severity of cardiac dysfunction predicts mortality in sepsis. Activation of transient receptor potential vanilloid receptor type (TRPV)-1, a predominantly neuronal nonselective cation channel, has been shown to improve outcome in sepsis and endotoxemia. However, the role of TRPV1 and the identity of its endogenous ligands in the cardiac dysfunction caused by sepsis and endotoxemia are unknown.
View Article and Find Full Text PDFTransfusion of platelet concentrates represents an important treatment for various bleeding complications. However, the short half-life and frequent contaminations with bacteria restrict the availability of platelet concentrates and raise a clear demand for platelets generated ex vivo. Therefore, in vitro platelet generation from megakaryocytes represents an important research topic.
View Article and Find Full Text PDFPlatelets, besides their specialised role in haemostasis and atherothrombosis, actively modulate innate and adaptive immune responses with crucial roles in immune surveillance, inflammation and host defence during infection. An important prerequisite for platelet-mediated changes of immune functions involves direct engagement with different types of leukocytes. Indeed, increased platelet-leukocyte aggregates (PLAs) within the circulation and/or locally at the site of inflammation represent markers of many thrombo-inflammatory diseases, such as cardiovascular diseases, acute lung injury, renal and cerebral inflammation.
View Article and Find Full Text PDFOur aim was to investigate if deoxyribonuclease (DNase) 1 is a potential therapeutic agent to reduce pathogenic effects of cigarette smoke exposure in the lung. Cigarette smoke causes protease imbalance with excess production of proteases, which is a key process in the pathogenesis of emphysema. The mechanisms responsible for this effect are not well-defined.
View Article and Find Full Text PDFThe kidney can be negatively affected by a range of innate and adaptive immune responses, resulting in alterations in the functions of the kidney and, in some cases, progression to renal failure. In many of these responses, infiltration of blood-borne leukocytes into the kidney is central to the response. In addition, a large population of mononuclear phagocytes resident in the kidney can modulate these responses.
View Article and Find Full Text PDFNonclassical monocytes undergo intravascular patrolling in blood vessels, positioning them ideally to coordinate responses to inflammatory stimuli. Under some circumstances, the actions of monocytes have been shown to involve promotion of neutrophil recruitment. However, the mechanisms whereby patrolling monocytes control the actions of neutrophils in the circulation are unclear.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2015
Objective: Reduced antiplatelet drug efficacy occurs in conditions of increased platelet turnover, associated with increased proportions of drug-free, that is, uninhibited, platelets. Here, we detail mechanisms by which drug-free platelets promote platelet aggregation in the face of standard antiplatelet therapy.
Approach And Results: To model standard antiplatelet therapy, platelets were treated in vitro with aspirin, the P2Y12 receptor blocker prasugrel active metabolite, or aspirin plus prasugrel active metabolite.
Testing of platelet function is central to the cardiovascular phenotyping of genetically modified mice. Traditional platelet function tests have been developed primarily for testing human samples and the volumes required make them highly unsuitable for the testing of mouse platelets. This limits research in this area.
View Article and Find Full Text PDFMicrovascular plasma protein leakage is an essential component of the inflammatory response and serves an important function in local host defense and tissue repair. Mediators such as histamine and bradykinin act directly on venules to increase the permeability of endothelial cell (EC) junctions. Neutrophil chemoattractants also induce leakage, a response that is dependent on neutrophil adhesion to ECs, but the underlying mechanism has proved elusive.
View Article and Find Full Text PDFA rise in intraluminal pressure triggers vasoconstriction in resistance arteries, which is associated with local generation of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Importantly, dysregulation of 20-HETE synthesis and activity has been implicated in several cardiovascular disease states, including ischemic disease, hypertension, and stroke; however, the exact molecular pathways involved in mediating 20-HETE bioactivity are uncertain. We investigated whether 20-HETE activates the transient receptor potential vanilloid 1 (TRPV1) and thereby regulates vascular function and blood pressure.
View Article and Find Full Text PDF