Publications by authors named "Finn Matthiesen"

Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion.

View Article and Find Full Text PDF

C-terminal α-amidated peptides are attractive therapeutic targets, but preparative methods to access amidated pharmaceuticals are limited both on lab and manufacturing-scale. Here we report a straightforward and scalable approach to the C-terminal α-amidation of peptides and proteins from cysteine-extended polypeptide precursors. This amidation protocol consists of three highly efficient steps: 1) selective cysteine thiol substitution with a photolabel, 2) photoinduced decarboxylative elimination and 3) enamide cleavage by simple acidolysis or inverse electron demand Diels-Alder reaction.

View Article and Find Full Text PDF

Flowthrough (FT) anion exchange (AEX) chromatography is a widely used polishing step for the purification of monoclonal antibody (mAb) formats. To accelerate downstream process development, high throughput screening (HTS) tools have proven useful. In this study, the binding behavior of six monovalent mAbs (mvAbs) was investigated by HTS in batch binding mode on different AEX and mixed-mode resins at process-relevant pH and NaCl concentrations.

View Article and Find Full Text PDF

Site selective chemical modification is a preferred method, employed to prolong the circulation half-life of biopharmaceuticals. Cysteines have been used as attachment point for such modification, however, to be susceptible for chemical modification the involved thiol must be in its reduced form. Proteins often contain disulfides, which aid to maintain their tertiary structure and therefore must remain intact.

View Article and Find Full Text PDF

Mannan-binding lectin (MBL) is a complex serum protein that plays an important role in innate immunity. In addition to assuming several different oligomeric forms, the polypeptide itself is highly heterogeneous. This heterogeneity is due to post-translational modifications, which help to stabilize the intact protein in its active conformation.

View Article and Find Full Text PDF

Mannan-binding lectin (MBL), a human plasma protein, plays an important role in the innate immune defence. MBL recognizes microorganisms through surface carbohydrate structures. Due to genetic polymorphisms, MBL plasma concentrations range from 5 to 10,000 ng/mL.

View Article and Find Full Text PDF

Mannan-binding lectin (MBL) is attracting considerable interest due to its role in the immune defense. The high frequency of congenital MBL deficiency makes it feasible to evaluate clinical relevance through epidemiological investigations on fairly limited numbers of patients. MBL deficiency is determined by three mutant allotypes termed B, C and D in the coding region as well as mutations in the promoter region.

View Article and Find Full Text PDF

Mannan-binding lectin (MBL) belongs to a family of proteins called the collectins, which show large differences in their ultrastructures. These differences are believed to be determined by different N-terminal disulfide-bonding patterns. So far only the bonding pattern of two of the simple forms (recombinant rat MBL-C and bovine CL-43) have been determined.

View Article and Find Full Text PDF

(15)N NMR relaxation parameters and amide (1)H/(2)H-exchange rates have been used to characterize the structural flexibility of human growth hormone (rhGH) at neutral and acidic pH. Our results show that the rigidity of the molecule is strongly affected by the solution conditions. At pH 7.

View Article and Find Full Text PDF