Philos Trans A Math Phys Eng Sci
July 2022
Implantable electronic neural interfaces typically take the form of probes and are made with rigid materials such as silicon and metals. These have advantages such as compatibility with integrated microchips, simple implantation and high-density nanofabrication but tend to be lacking in terms of biointegration, biocompatibility and durability due to their mechanical rigidity. This leads to damage to the device or, more importantly, the brain tissue surrounding the implant.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2022
Careful design and material selection are the most beneficial strategies to ensure successful implantation and mitigate the failure of a neural probe in the long term. In order to realize a fully flexible implantable system, the probe should be easily manipulated by neuroscientists, with the potential to bend up to 90°. This paper investigates the impact of material choice, probe geometry, and crucially, implantation angle on implantation success through finite-element method simulations in followed by cleanroom microfabrication.
View Article and Find Full Text PDFLiquid-liquid transitions between two amorphous phases in a single-component liquid have courted controversy. All known examples of liquid-liquid transitions in molecular liquids have been observed in the supercooled state, suggesting an intimate connection with vitrification and locally favored structures inhibiting crystallization. However, there is precious little information about the local molecular packing in supercooled liquids, meaning that the order parameter of the transition is still unknown.
View Article and Find Full Text PDFDespite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that mosquitoes, vectors of the disease, have developed to insecticides. must survive for at least 10 days to possibly transmit malaria.
View Article and Find Full Text PDFAbout 20 years ago, it was shown that lasers can nucleate crystals in super-saturated solutions and might even be able to select the polymorph that crystallises. However, no theoretical model was found explaining the results and progress was slowed down. Here we show that laser-induced nucleation may be understood in terms of the harnessing of concentration fluctuations near a liquid-liquid critical point using optical tweezing in a process called laser-induced phase separation (LIPS) and LIPS and nucleation (LIPSaN).
View Article and Find Full Text PDFControl over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress.
View Article and Find Full Text PDFFrustration of crystallisation by locally favoured structures is critically important in linking the phenomena of supercooling, glass formation, and liquid-liquid transitions. Here we show that the putative liquid-liquid transition in n-butanol is in fact caused by geometric frustration associated with an isotropic to rippled lamellar liquid-crystal transition. Liquid-crystal phases are generally regarded as being "in between" the liquid and the crystalline state.
View Article and Find Full Text PDF