Publications by authors named "Finian J Leeper"

Thiamine is metabolized into thiamine pyrophosphate (TPP), an essential enzyme cofactor. Previous work has shown that oxythiamine, a thiamine analog, is metabolized by thiamine pyrophosphokinase (TPK) into oxythiamine pyrophosphate within the malaria parasite and then inhibits TPP-dependent enzymes, killing the parasite and . To identify a more potent antiplasmodial thiamine analog, 11 commercially available compounds were tested against and .

View Article and Find Full Text PDF

Thiamine (vitamin B1) is essential for energy metabolism, and interruption of its utilization pathways is linked to various disease states. Thiamine pyrophosphate (TPP, the bioactive form of ) functions as a coenzyme of a variety of enzymes. To understand the role of vitamin B1 in these diseases, a chemical approach is to use coenzyme analogues to compete with TPP for the enzyme active site, which abolishes the coenzyme function.

View Article and Find Full Text PDF
Article Synopsis
  • Aminoglycosides, like gentamicin, are critical antibiotics used for severe infections, particularly those caused by Gram-negative bacteria, despite some toxicity associated with their use.
  • Gentamicin consists of multiple compounds with slight variations, and the enzyme GenB2 is crucial for a specific chemical modification (epimerization) that differentiates two of these compounds, gentamicin C2 and C2a.
  • This research determined the structure of GenB2 and revealed its unique mechanism of action, which involves a specific cysteine residue, and offers insights that could aid in developing new aminoglycoside antibiotics.
View Article and Find Full Text PDF

Most pathogenic bacteria, apicomplexan parasites and plants rely on the methylerythritol phosphate (MEP) pathway to obtain precursors of isoprenoids. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS), a thiamine diphosphate (ThDP)-dependent enzyme, catalyses the first and rate-limiting step of the MEP pathway. Due to its absence in humans, DXPS is considered as an attractive target for the development of anti-infectious agents and herbicides.

View Article and Find Full Text PDF

Pyruvate dehydrogenase complex (PDHc) is suppressed in some cancer types but overexpressed in others. To understand its contrasting oncogenic roles, there is a need for selective PDHc inhibitors. Its E1-subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme and catalyses the first and rate-limiting step of the complex.

View Article and Find Full Text PDF

A common approach to studying thiamine pyrophosphate (TPP)-dependent enzymes is by chemical inhibition with thiamine/TPP analogues which feature a neutral aromatic ring in place of the positive thiazolium ring of TPP. These are potent inhibitors but their preparation generally involves multiple synthetic steps to construct the central ring. We report efficient syntheses of novel, open-chain thiamine analogues which potently inhibit TPP-dependent enzymes and are predicted to share the same binding mode as TPP.

View Article and Find Full Text PDF

Thiamine diphosphate (ThDP), the bioactive form of vitamin B, is an essential coenzyme needed for processes of cellular metabolism in all organisms. ThDP-dependent enzymes all require ThDP as a coenzyme for catalytic activity, although individual enzymes vary significantly in substrate preferences and biochemical reactions. A popular way to study the role of these enzymes through chemical inhibition is to use thiamine/ThDP analogues, which typically feature a neutral aromatic ring in place of the positively charged thiazolium ring of ThDP.

View Article and Find Full Text PDF

Thiamine is metabolized into the coenzyme thiamine diphosphate (ThDP). Interrupting thiamine utilization leads to disease states. Oxythiamine, a thiamine analogue, is metabolized into oxythiamine diphosphate (OxThDP), which inhibits ThDP-dependent enzymes.

View Article and Find Full Text PDF

, a plant-pathogenic bacterium, produces solanimycin, a potent hybrid polyketide/nonribosomal peptide (PKS/NRPS) anti-fungal compound. The biosynthetic gene cluster responsible for synthesis of this compound has been identified. Because of instability, the complete structure of the compound has not yet been elucidated, but LC-MS identified that the cluster produces two main compounds, solanimycin A and B, differing by a single hydroxyl group.

View Article and Find Full Text PDF

There is an unmet clinical need for imaging agents capable of detecting early evidence of tumor cell death, since the timing, extent, and distribution of cell death in tumors following treatment can give an indication of treatment outcome. We describe here Ga-labeled C2Am, which is a phosphatidylserine-binding protein, for imaging tumor cell death in vivo using positron emission tomography (PET). A one-pot synthesis of Ga-C2Am (20 min, 25 °C, >95% radiochemical purity) has been developed, using a NODAGA-maleimide chelator.

View Article and Find Full Text PDF

Suppression of pyruvate dehydrogenase complex (PDHc) is a mechanism for cancer cells to manifest the Warburg effect. However, recent evidence suggests that whether PDHc activity is suppressed or activated depends on the type of cancer. The PDHc E1 subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme, catalysing the first and rate-limiting step of PDHc; thus, there is a need for selective PDH E1 inhibitors.

View Article and Find Full Text PDF

Inhibition of thiamine pyrophosphate (TPP)-dependent enzymes with thiamine/TPP analogues that have the central thiazolium ring replaced with other rings is well established, but a limited number of central rings have been reported. We report a novel analogue, pyrrothiamine, with a central pyrrole ring. We further develop pyrrothiamine derivatives as potent and selective inhibitors of pyruvate dehydrogenase, which might have anti-cancer potential.

View Article and Find Full Text PDF

A key step in the biosynthesis of numerous polyketides is the stereospecific formation of a spiroacetal (spiroketal). We report here that spiroacetal formation in the biosynthesis of the macrocyclic polyketides ossamycin and oligomycin involves catalysis by a novel spiroacetal cyclase. OssO from the ossamycin biosynthetic gene cluster (BGC) is homologous to OlmO, the product of an unannotated gene from the oligomycin BGC.

View Article and Find Full Text PDF

A series of derivatives of a triazole analogue of thiamine has been synthesised. When tested as inhibitors of porcine pyruvate dehydrogenase, the benzoyl ester derivatives proved to be potent thiamine pyrophosphate (TPP) competitive inhibitors, with the affinity of the most potent analogue ( = 54 nM) almost matching the affinity of TPP itself. When tested as antiplasmodials, most of the derivatives showed modest activity (IC value >60 μM), except for a 4'--benzyl derivative, which has an IC value in the low micromolar range.

View Article and Find Full Text PDF

Methylcyclopropene (Cyoc)-tagged tetra-acetylated monosaccharides, and in particular mannosamine derivatives, are promising tools for medical imaging of cancer using metabolic oligosaccharide engineering and the extremely fast inverse electron-demand Diels-Alder bioorthogonal reaction. However, the potential of these monosaccharide derivatives has yet to be fully explored due to their low aqueous solubility. To address this issue, we sought to vary the extent of acetylation of Cyoc-tagged monosaccharides and probe its effect on the extent of glycan labeling in various cancer cell lines.

View Article and Find Full Text PDF

Pyrophosphates have important functions in living systems and thus pyrophosphate-containing molecules and their more stable bisphosphonate analogues have the potential to be used as drugs for treating many diseases including cancer and viral infections. Both pyrophosphates and bisphosphonates are polyanionic at physiological pH and, whilst this is essential for their biological activity, it also limits their use as therapeutic agents. In particular, the high negative charge density of these compounds prohibits cell entry other than by endocytosis, prevents transcellular oral absorption and causes sequestration to bone.

View Article and Find Full Text PDF

A biosynthetic pathway for the red-antibiotic, prodigiosin, was proposed over a decade ago but not all the suggested intermediates could be detected experimentally. Here we show that a thioester that was not originally included in the pathway is an intermediate. In addition, the enzyme PigE was originally described as a transaminase but we present evidence that it also catalyses the reduction of the thioester intermediate to its aldehyde substrate.

View Article and Find Full Text PDF

Introduction: Trialing novel cancer therapies in the clinic would benefit from imaging agents that can detect early evidence of treatment response. The timing, extent and distribution of cell death in tumors following treatment can give an indication of outcome. We describe here an F-labeled derivative of a phosphatidylserine-binding protein, the C2A domain of Synaptotagmin-I (C2Am), for imaging tumor cell death in vivo using PET.

View Article and Find Full Text PDF

Enzymes catalysing remarkable Diels-Alder-like [4+2] cyclisations have been previously implicated in the biosynthesis of spirotetronate and spirotetramate antibiotics. Biosynthesis of the polyether antibiotic tetronasin is not anticipated to require such steps, yet the tetronasin gene cluster encodes enzymes Tsn11 and Tsn15, homologous to authentic [4+2] cyclases. Here we show that deletion of Tsn11 led to accumulation of a late-stage intermediate, in which the two central rings of tetronasin, and four of its 12 asymmetric centres, remain unformed.

View Article and Find Full Text PDF

In the biosynthesis of the tripyrrolic pigment prodigiosin, PigB is a predicted flavin-dependent oxidase responsible for the formation of 2-methyl-3-amylpyrrole (MAP) from a dihydropyrrole. To prove which dihydropyrrole is the true intermediate, both possibilities, 5-methyl-4-pentyl-3,4-dihydro-2H-pyrrole (5 a, resulting from transamination of the aldehyde of 3-acetyloctanal) and 2-methyl-3-pentyl-3,4-dihydro-2H-pyrrole (6, resulting from transamination of the ketone), were synthesised. Only 5 a restored pigment production in a strain of Serratia sp.

View Article and Find Full Text PDF

Bottromycin A2 is a structurally unique ribosomally synthesized and post-translationally modified peptide (RiPP) that possesses potent antibacterial activity towards multidrug-resistant bacteria. The structural novelty of bottromycin stems from its unprecedented macrocyclic amidine and rare β-methylated amino acid residues. The N-terminus of a precursor peptide (BtmD) is converted into bottromycin A2 by tailoring enzymes encoded in the btm gene cluster.

View Article and Find Full Text PDF

Glycosylation is a ubiquitous post-translational modification, present in over 50 % of the proteins in the human genome,1 with important roles in cell-cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases,2 including cancer.3 We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium-based bioorthogonal MRI probe.

View Article and Find Full Text PDF

Glycosylation is a ubiquitous post-translational modification, present in over 50% of the proteins in the human genome, with important roles in cell-cell communication and migration. Interest in glycome profiling has increased with the realization that glycans can be used as biomarkers of many diseases, including cancer. We report here the first tomographic imaging of glycosylated tissues in live mice by using metabolic labeling and a gadolinium-based bioorthogonal MRI probe.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione7i0r4di2r5lut0br5bbg5ur2h5qk2or): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once