Publications by authors named "Finger-Baier K"

Traumatic stress exposure increases noradrenaline (NA) release, which contributes to anxiety and impaired risk-appraisal. Guanfacine, a selective alpha-2A adrenergic receptor agonist, has been used to treat stress-related disorders characterised by impaired prefrontal cortex function. By acting on both presynaptic inhibitory autoreceptors and postsynaptic heteroreceptors, guanfacine attenuates stress reactivity and enhances cognition.

View Article and Find Full Text PDF

Empirical evidence suggests fishes meet the criteria for experiencing pain beyond a reasonable doubt and zebrafish are being increasingly used in studies of pain and nociception. Zebrafish are adopted across a wide range of experimental fields and their use is growing particularly in biomedical studies. Many laboratory procedures in zebrafish involve tissue damage and this may give rise to pain.

View Article and Find Full Text PDF

Cognitive rigidity (CR) refers to inadequate executive adaptation in the face of changing circumstances. Increased CR is associated with a number of psychiatric disorders, for example, obsessive-compulsive disorder, and improving cognitive functioning by targeting CR in these conditions, may be fruitful. Levetiracetam (LEV), clinically used to treat epilepsy, may have pro-cognitive effects by restoring balance to neuronal signalling.

View Article and Find Full Text PDF

Cognitive flexibility, shown to be impaired in patients presenting with compulsions, is dependent on balanced dopaminergic and serotonergic interaction. Towards the development of a zebrafish (Danio rerio) screening test for anti-compulsive drug action, we manipulated social reward appraisal under different contexts by means of dopaminergic (apomorphine) and serotonergic (escitalopram) intervention. Seven groups of zebrafish (n = 6 per group) were exposed for 24 days (1 h per day) to either control (normal tank water), apomorphine (50 or 100 μg/L), escitalopram (500 or 1000 μg/L) or a combination (A100/E500 or A100/E1000 μg/L).

View Article and Find Full Text PDF

The increasing importance of zebrafish as a biomedical model organism is reflected by the steadily growing number of publications and laboratories working with this species. Regulatory recommendations for euthanasia as issued in Directive 2010/63/EU are, however, based on experience with fish species used for food production and do not take the small size and specific physiology of zebrafish into account. Consequently, the currently recommended methods of euthanasia in the Directive 2010/63/EU are either not applicable or may interfere with research goals.

View Article and Find Full Text PDF

Genetic access to small, reproducible sets of neurons is key to an understanding of the functional wiring of the brain. Here we report the generation of a new Gal4- and Cre-driver resource for zebrafish neurobiology. Candidate genes, including cell type-specific transcription factors, neurotransmitter-synthesizing enzymes and neuropeptides, were selected according to their expression patterns in small and unique subsets of neurons from diverse brain regions.

View Article and Find Full Text PDF

The EU Directive on the use animals in research requires scientists to assess and document pain, distress or lasting harm of genetically modified animals. This article proposes a detailed protocol and guidelines for assessing adverse phenotypes in teleost fish, an important model organism for biomedical research. [Image: see text]

View Article and Find Full Text PDF

The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood.

View Article and Find Full Text PDF

The visual system converts the distribution and wavelengths of photons entering the eye into patterns of neuronal activity, which then drive motor and endocrine behavioral responses. The gene products important for visual processing by a living and behaving vertebrate animal have not been identified in an unbiased fashion. Likewise, the genes that affect development of the nervous system to shape visual function later in life are largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Specialized structures in the eye and ear evolved to detect light and sound, relying on common genes despite their differences.
  • Mutations in Usher (USH) genes, like USH1F, lead to visual and auditory deficits, as seen in both humans and animal models.
  • In zebrafish, two versions of the pcdh15 gene have distinct roles: pcdh15a is crucial for ear function, while pcdh15b is essential for proper eye structure, suggesting a gene duplication that allowed specialization for each sense.
View Article and Find Full Text PDF

The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes.

View Article and Find Full Text PDF
Article Synopsis
  • The vertebrate eye develops from the retina anlage and optic vesicles, where the neural retina forms.
  • Chokh (chk) mutant zebrafish lack eyes early in development due to blocked optic vesicle formation and neuronal differentiation, despite normal retinal fate specification.
  • The chk gene is identified as the transcription factor Rx3, which, when mutated, leads to an eyeless condition in both zebrafish and medaka, indicating evolutionary conservation in gene regulation but differences in downstream processes.
View Article and Find Full Text PDF

Mutation of the zebrafish lakritz (lak) locus completely eliminates the earliest-born retinal cells, the ganglion cells (RGCs). Instead, excess amacrine, bipolar, and Müller glial cells are generated in the mutant. The extra amacrines are found at ectopic locations in the ganglion cell layer.

View Article and Find Full Text PDF