This study introduces novel cospray-dried (Co-SD) formulations of simvastatin, a Nrf2 activator ROCK inhibitor, with l-carnitine as molecular mixtures in various molar ratios for targeted pulmonary inhalation aerosol delivery in pulmonary hypertension, optimized for excipient-free dry powder inhalers (DPIs). The two components were spray-dried at various molar ratios by using different starting feed solution concentrations and process parameters. In addition to comprehensive physicochemical characterization, in vitro aerosol dispersion performance as DPIs using two FDA-approved DPI devices with different shear stress properties, in vitro viability as a function of dose on 2D human pulmonary cellular monolayers and on 3D small airway epithelia human primary cultures at the air-liquid interface (ALI), and in vitro transepithelial electrical resistance (TEER) at the ALI were conducted.
View Article and Find Full Text PDFPediatric pulmonary hypertension is a heterogeneous disease associated with significant morbidity and mortality. MicroRNAs have been implicated as both pathologic drivers of disease and potential therapeutic targets in pediatric pulmonary hypertension. We sought to characterize the circulating microRNA profiles of a diverse array of pediatric patients with pulmonary hypertension using high-throughput sequencing technology.
View Article and Find Full Text PDFObjective: To investigate the feasibility of using actigraphy to measure physical activity (pA) and heart rate variability (HRV) as study endpoints in pediatric pulmonary arterial hypertension (PAH) and to compare their performance to 6-minute-walk distance (6MWD), a common primary endpoint used in PAH clinical trials in adults and children who can walk and understand the test process.
Study Design: We conducted a prospective, multicenter, noninterventional study in pediatric PAH patients and healthy children. Actiheart and Fitbit Charge 2 recorded pA and heart rate data.
Co-spray dried inhalable powder formulations of fasudil monohydrochloride salt (FMCS) and inhalable lung surfactant-based nanocarriers composed of synthetic phospholipids, zwitterionic DPPC (1,2-palmitoyl--glycero-3-phosphocholine) and anionic DPPG (1,2-dipalmitoyl--glycero-3-[phosphor-rac-1-glycerol]) sodium salt, were designed and optimized using organic solution advanced spray drying. FMCS can potentially be used for the treatment of various complex pulmonary diseases with this current work focusing on pulmonary arterial hypertension. Comprehensive physicochemical characterization, electron and optical microscopy imaging, thermal analysis, molecular fingerprinting spectroscopy, in vitro aerosol dispersion performance with human dry powder inhaler (DPI) devices, in vitro membrane permeation and drug release, and in vitro human cellular studies were conducted.
View Article and Find Full Text PDFDesign and analysis are presented for a new device to test the response of endothelial cells to the simultaneous action of cyclic shear stresses and pressure fluctuations. The design consists of four pulsatile-flow chambers connected in series, where shear stress is identical in all four chambers and pressure amplitude decreases in successive chambers. Each flow chamber is bounded above and below by two parallel plates separated by a small gap.
View Article and Find Full Text PDFPreviously, we have shown that endothelial nitric-oxide synthase (eNOS) dimer levels directly correlate with the interaction of eNOS with hsp90 (heat shock protein 90). Further, the disruption of eNOS dimerization correlates with its redistribution to the mitochondria. However, the causal link between these events has yet to be investigated and was the focus of this study.
View Article and Find Full Text PDFThe Rho Kinase (ROCK) pathway is recognized to be involved in changes that lead to remodeling in pulmonary hypertension (PH), particularly cellular processes including signaling, contraction, migration, proliferation, differentiation, and apoptosis. Simvastatin (Sim) has a potent anti-proliferative and pro-apoptotic effect on vasculature smooth muscle cells through the inhibition of the synthesis of isoprenoids intermediates which are essential for the post-translational isoprenylation of Rho, Rac, and Ras family GTPases. Sim targets the underlying mechanism in vascular remodeling.
View Article and Find Full Text PDFObjectives: To describe the typical clinical course of reversible persistent pulmonary hypertension of the newborn (PPHN) from perinatal etiologies and compare that with the clinical course of PPHN due to underlying fetal developmental etiologies.
Study Design: This was a single-center, retrospective cohort study of liveborn newborns either born or transferred to our facility for higher level of care between 2015 and 2020 with gestational age ≥35 weeks and a clinical diagnosis of PPHN in the electronic health record. Newborns with complex congenital heart disease and congenital diaphragmatic hernia were excluded.
Objective: The study objective was to describe the course and outcomes of children under 18 years of age, with left-to-right shunts and pulmonary arterial hypertension undergoing 1 of 2 management approaches: pulmonary arterial hypertension treatment before left-to-right shunt repair (Treat First) and left-to-right shunt repair first with or without subsequent pulmonary arterial hypertension treatment (Repair First).
Methods: We performed a retrospective single-center study, conducted from September 2015 to September 2021, of children with left-to-right shunts and pulmonary arterial hypertension (defined as indexed pulmonary vascular resistance ≥ 4 Wood units [WU]∗m) but without Eisenmenger physiology. Patient characteristics, longitudinal hemodynamics data, pulmonary arterial hypertension management, left-to-right shunt repair, and outcomes were reviewed.
Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI.
View Article and Find Full Text PDFHemorrhagic shock is a major source of morbidity and mortality worldwide. While whole blood or blood product transfusion is a first-line treatment, maintaining robust supplies presents significant logistical challenges, particularly in austere environments. OMX is a novel nonhemoglobin (Hb)-based oxygen carrier derived from the H-NOX (heme-nitric oxide/oxygen binding) protein family.
View Article and Find Full Text PDFCardiac catheterization remains the gold standard for the diagnosis and management of pediatric pulmonary hypertension (PH). There is lack of consensus regarding optimal anesthetic and airway regimen. This retrospective study describes the anesthetic/airway experience of our single center cohort of pediatric PH patients undergoing catheterization, in which obtaining hemodynamic data during spontaneous breathing is preferential.
View Article and Find Full Text PDFPulmonary vasodilator treatment can improve hemodynamics, right ventricular function, symptoms, and survival in pediatric pulmonary hypertension (PH). However, clinical trial data are lacking due to many constraints. One major limitation is the lack of relevant trial endpoints reflective of hemodynamics or functional status in patients in whom standard exercise testing is impractical, unreliable, or not reproducible.
View Article and Find Full Text PDFOnce thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics.
View Article and Find Full Text PDFScope: The rapid transition to telehealth following the COVID-19 pandemic raised challenges for remote delivery of physical therapy. One challenge was identifying outcome measures for people with Parkinson Disease (PwP) that could safely be conducted via telehealth. This paper evaluates the feasibility of a telehealth physical therapy examination battery for PwP in early to middle stage of disease progression.
View Article and Find Full Text PDFThe disruption of mitochondrial dynamics has been identified in cardiovascular diseases, including pulmonary hypertension (PH), ischemia-reperfusion injury, heart failure, and cardiomyopathy. Mitofusin 2 (Mfn2) is abundantly expressed in heart and pulmonary vasculature cells at the outer mitochondrial membrane to modulate fusion. Previously, we have reported reduced levels of Mfn2 and fragmented mitochondria in pulmonary arterial endothelial cells (PAECs) isolated from a sheep model of PH induced by pulmonary over-circulation and restoring Mfn2 normalized mitochondrial function.
View Article and Find Full Text PDFStatin therapy is a cornerstone in the treatment of systemic vascular diseases. However, statins have failed to translate as therapeutics for pulmonary vascular disease. Early pulmonary vascular disease in the setting of congenital heart disease (CHD) is characterized by endothelial dysfunction, which precedes the more advanced stages of vascular remodeling.
View Article and Find Full Text PDFOriginally approved by the U.S. Food and Drug Administration (FDA) for its antihistamine properties, clemastine can also promote white matter integrity and has shown promise in the treatment of demyelinating diseases such as multiple sclerosis.
View Article and Find Full Text PDFObjective: Pulmonary hypertension (PH) is a progressive disease with vascular remodeling as a critical structural alteration. We have previously shown that metabolic reprogramming is an early initiating mechanism in animal models of PH. This metabolic dysregulation has been linked to remodeling the mitochondrial network to favor fission.
View Article and Find Full Text PDFBackground: Neonates with persistent pulmonary hypertension of the newborn (PPHN) can present with hypoxia and right ventricular dysfunction with resultant inadequate oxygen delivery and end-organ damage. This study describes the use of prostaglandin-E1 (PGE) for ductal patency to preserve right ventricular systolic function and limit afterload in newborns with PPHN.
Methods: This is a retrospective cohort study that follows the hemodynamics, markers of end-organ perfusion, length of therapeutics, and echocardiographic variables of 57 newborns who used prostglandin-E1 in the setting of PPHN.