Centromeres are essential mediators of chromosomal segregation, but both centromeric DNA sequences and associated kinetochore proteins are paradoxically diverse across species. The selfish centromere model explains rapid evolution by both components via an arms-race scenario: centromeric DNA variants drive by distorting chromosomal transmission in female meiosis and attendant fitness costs select on interacting proteins to restore Mendelian inheritance. Although it is clear than centromeres can drive and that drive often carries costs, female meiotic drive has not been directly linked to selection on kinetochore proteins in any natural system.
View Article and Find Full Text PDFInferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M.
View Article and Find Full Text PDFThe protein titin plays a key role in vertebrate muscle where it acts like a giant molecular spring. Despite its importance and conservation over vertebrate evolution, a lack of high quality annotations in non-model species makes comparative evolutionary studies of titin challenging. The PEVK region of titin-named for its high proportion of Pro-Glu-Val-Lys amino acids-is particularly difficult to annotate due to its abundance of alternatively spliced isoforms and short, highly repetitive exons.
View Article and Find Full Text PDFCopy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on a tRNA ligase gene (Migut.N02091; RLG1a) exhibiting unprecedented, and fitness-relevant, CNV within an annual population of the yellow monkeyflower Mimulus guttatus.
View Article and Find Full Text PDFEarly comparative genomics studies originally uncovered a nonintuitive pattern; genes involved in reproduction appeared to evolve more rapidly than other classes of genes. Currently, the emerging consensus is that genes encoding reproductive proteins evolve under variable selective pressures, producing more heterogeneous divergence patterns than previously appreciated. Here, we investigate a facet of that heterogeneity and explore the factors that drive male reproductive tissue-based heterogeneity in evolutionary rates.
View Article and Find Full Text PDFIntraspecific coevolution between selfish elements and suppressors may promote interspecific hybrid incompatibility, but evidence of this process is rare. Here, we use genomic data to test alternative models for the evolution of cytonuclear hybrid male sterility in Mimulus In hybrids between Iron Mountain (IM) Mimulus guttatus × Mimulus nasutus, two tightly linked M. guttatus alleles (Rf1/Rf2) each restore male fertility by suppressing a local mitochondrial male-sterility gene (IM-CMS).
View Article and Find Full Text PDFMicrogeographic adaptation provides a particularly interesting context for understanding the genetic basis of phenotypic divergence and may also present unique empirical challenges. In particular, plant adaptation to extreme soil mosaics may generate barriers to gene flow or shifts in mating system that confound simple genomic scans for adaptive loci. Here, we combine three approaches - quantitative trait locus (QTL) mapping of candidate intervals in controlled crosses, population resequencing (PoolSeq) and analyses of wild recombinant individuals - to investigate one trait associated with Mimulus guttatus (yellow monkeyflower) adaptation to geothermal soils in Yellowstone National Park.
View Article and Find Full Text PDFThe fundamental asymmetry of female meiosis creates an arena for genetic elements to compete for inclusion in the egg, promoting the selfish evolution of centromere variants that maximize their transmission to the future egg. Such "female meiotic drive" has been hypothesized to explain the paradoxically complex and rapidly evolving nature of centromeric DNA and proteins. Although theoretically widespread, few cases of active drive have been observed, thereby limiting the opportunities to directly assess the impact of centromeric drive on molecular variation at centromeres and binding proteins.
View Article and Find Full Text PDFDe novo assembled transcriptomes, in combination with RNA-Seq, are powerful tools to explore gene sequence and expression level in organisms without reference genomes. Investigators must first choose which high throughput sequencing platforms will provide data most suitable for their experimental goals. In this study, we explore the utility of 454 and Illumina sequences for de novo transcriptome assembly and downstream RNA-Seq applications in a reproductive gland from a non-model bird species, the Japanese quail (Coturnix japonica).
View Article and Find Full Text PDFOne striking pattern in molecular evolution is that genes encoding proteins involved in reproduction tend to evolve rapidly. Seminal fluid proteins frequently exhibit this pattern and directly affect multiple reproductive processes including enhancing sperm performance and mediating postmating sexual selection. Here, we investigate molecular evolutionary patterns of genes expressed in the foam gland of Japanese quail (Coturnix japonica), a novel reproductive phenotype.
View Article and Find Full Text PDF