Publications by authors named "Fillipp Edvard Salvador"

MIL-53 represents one of the most notable metal-organic frameworks given its unique structural flexibility and remarkable thermal stability. In this study, a shaker-type ball milling method has been developed into a facile and generalizable synthetic strategy to access a family of MIL-53 type materials under ambient conditions. During the explorations of [M(OH)(fumarate)] (M = Al, Ga, and In), we report a positive correlation between the metal-ligand (M-L) bond reversibility and the size of resultant crystallites under the mechanochemical process.

View Article and Find Full Text PDF

Mechanochemistry, a resurging synthetic approach, has been developed into an effective and controllable method to access a family of crystalline porous catechol-derived metal-organic frameworks (MOFs) for the first time. We have identified that the obtained crystalline phase is readily tunable by precursors and the addition of solvents or drying agents. The described mechanochemistry allows us to synthesize these materials in a highly sustainable manner.

View Article and Find Full Text PDF

Mechanochemical synthesis is emerging as an environmentally friendly yet efficient approach to preparing metal-organic frameworks (MOFs). Herein, we report our systematic investigation on the mechanochemical syntheses of Group 4 element-based MOFs. The developed mechanochemistry allows us to synthesize a family of HfO(OH)(OOC)-based MOFs.

View Article and Find Full Text PDF