Publications by authors named "Fillaut M"

Bidimensional electrophoresis was used to compare sarcoplasmic protein profiles of early post-mortem pig semimembranosus muscles, sampled from pigs of different HAL genotypes (RYR1 mutation 1841T/C): 6 NN, 6 Nn, 6 nn. ANOVA showed that 55 (18%) of the total of 300 matched protein spots were influenced by genotype, and hierarchical clustering analysis identified 31 (10% of the matched proteins) additional proteins coregulated with these proteins. Fold-changes of differentially expressed proteins were between 1.

View Article and Find Full Text PDF

Mitochondrial respiratory rates and regulation by phosphate acceptors were studied on permeabilized fiber bundles differing in their myosin heavy chain profiles. The acceptor control ratio, an indicator of oxidation to phosphorylation coupling, and mitochondrial K(m) for ADP were the highest in type I, intermediate in mixed IIa/IIx and the lowest in IIx and predominantly IIb fiber bundles. A functional coupling between mitochondrial creatine kinase and oxidative phosphorylation occurred in type I and IIa/IIx fiber bundles, exclusively.

View Article and Find Full Text PDF

Mitochondrial respiration rates and their regulation by ADP, AMP and creatine, were studied at different free Ca(2+) concentrations (0.1 versus 0.4 microm) on permeabilized fibre bundles of rabbit skeletal muscles differing in their myosin heavy chain profiles.

View Article and Find Full Text PDF

Skeletal muscle exhibits considerable variation in mitochondrial content among fiber types, but it is less clear whether mitochondria from different fiber types also present specific functional and regulatory properties. The present experiment was undertaken on ten 170-day-old pigs to compare functional properties and control of respiration by adenine nucleotides in mitochondria isolated from predominantly slow-twitch (Rhomboideus (RM)) and fast-twitch (Longissimus (LM)) muscles. Mitochondrial ATP synthesis, respiratory control ratio (RCR) and ADP-stimulated respiration with either complex I or II substrates were significantly higher (25-30%, P<0.

View Article and Find Full Text PDF

In pigs, the optimal utilization of energy substrates within muscle fibers is a prerequisite of the utmost importance for successful adaptation to extra-uterine life. In the present work we demonstrate that fatty acid (FA) oxidative capacities increased within the first five days of life in piglet skeletal muscle. Mitochondrial FA oxidation capacities increased more in the rhomboideus oxidative than in the longissimus lumborum glycolytic muscle (+114% vs.

View Article and Find Full Text PDF

To determine to what extent exposure to high ambient temperature and feeding level affect tissue energy metabolism in piglets, regional blood flow and oxidative capacity of tissues were evaluated in sixteen 21.8 +/- 2.8 kg pigs.

View Article and Find Full Text PDF

Asphyxia during delivery is considered a main cause of stillbirth in pigs, but piglets suffering from intermittent asphyxia during delivery are also less viable at birth and less prone to adapt to extrauterine life. In an effort to improve pig viability, one attractive solution would be to increase oxygen supply through oxygen inhalation by the newborn pig. The objective of this study was to test effects of oxygen inhalation immediately after birth on various physiological parameters and piglet survival.

View Article and Find Full Text PDF

Newborn pigs rely essentially on shivering thermogenesis in the cold. In order to understand the rapid postnatal enhancement of thermogenic capacities in piglets, the oxygen and nutrient uptake of hindquarters was measured in vivo in 1- (n = 6) and 5-day-old (n = 6) animals at thermal neutrality and during cold exposure. The hindquarters were considered to represent a skeletal muscle compartment.

View Article and Find Full Text PDF

Newborn pigs (n = 117) were used to provide information on the relationships of degree of asphyxia during delivery, viability at birth, and some striking aspects of postnatal vitality including survival, interval between birth and first udder contact and between birth and first suckling, rectal temperature at 24 h of life (RT24), and growth rate over the first 10 d of life. The degree of asphyxia at birth was estimated from cord blood pCO2, pH, and lactate levels. Onset of respiration, heart rate, skin color, and attempts to stand during the first minute after birth were used to estimate the viability score.

View Article and Find Full Text PDF