Publications by authors named "Filippo Rossignoli"

Recent progress in cancer cell-based therapies has led to effective targeting and robust immune responses against cancer. However, the inherent safety risks of using live cancer cells necessitate the creation of an optimized safety switch without hindering the efficacy of immunotherapy. The existing safety switches typically induce tolerogenic cell death, potentially leading to an immunosuppressive tumor immune microenvironment (TIME), which is counterproductive to the goals of immunotherapy.

View Article and Find Full Text PDF

Highly malignant brain tumors, glioblastomas (GBM), are immunosuppressive, thereby limiting current promising immunotherapeutic approaches. In this study, we created interferon receptor 1 knockout allogeneic mesenchymal stem cells (MSC) to secrete dual-function pro-apoptotic and immunomodulatory interferon (IFN) β (MSC-IFNβ) using a single lentiviral vector CRISPR/Cas9 system. We show that MSC-IFNβ induces apoptosis in GBM cells and upregulates the cell surface expression of programmed death ligand-1 in tumor cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive and common type of malignant brain tumor diagnosed in adults. Preclinical immunocompetent mouse tumor models generated using mouse tumor cells play a pivotal role in testing the therapeutic efficacy of emerging immune-based therapies for GBMs. However, the clinical translatability of such studies is limited as mouse tumor lines do not fully recapitulate GBMs seen in inpatient settings.

View Article and Find Full Text PDF

The administration of inactivated tumor cells is known to induce a potent antitumor immune response; however, the efficacy of such an approach is limited by its inability to kill tumor cells before inducing the immune responses. Unlike inactivated tumor cells, living tumor cells have the ability to track and target tumors. Here, we developed a bifunctional whole cancer cell-based therapeutic with direct tumor killing and immunostimulatory roles.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphoid cells with robust antitumor functions rendering them promising therapeutic tools against malignancies. Despite constituting a minor fraction of the immune cells infiltrating tumors in the brain, insights into their role in central nervous system (CNS) pathophysiology are emerging. The challenges posed by a profoundly immunosuppressive microenvironment as well as by tumor resistance mechanisms necessitate exploring avenues to enhance the therapeutic potential of NK cells in both primary and metastatic brain malignancies.

View Article and Find Full Text PDF

Background: Ewing's sarcoma (ES) is an aggressive cancer affecting children and young adults. We pre-clinically demonstrated that mesenchymal stromal/stem cells (MSCs) can deliver tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) against primary ES after local injection. However, ES is often metastatic calling for approaches able to support MSC targeting to the ES multiple remote sites.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has grown to be a global public health crisis with no safe and effective treatments available yet. Recent findings suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus pathogen that causes COVID-19, could elicit a cytokine storm that drives edema, dysfunction of the airway exchange, and acute respiratory distress syndrome in the lung, followed by acute cardiac injury and thromboembolic events leading to multiorgan failure and death. Mesenchymal stem cells (MSCs), owing to their powerful immunomodulatory abilities, have the potential to attenuate the cytokine storm and have therefore been proposed as a potential therapeutic approach for which several clinical trials are underway.

View Article and Find Full Text PDF

Pancreatic cancer is the fourth leading cause of cancer death in western countries with more than 100,000 new cases per year in Europe and a mortality rate higher than 90%. In this scenario, advanced therapies based on gene therapies are emerging, thanks to a better understanding of tumour architecture and cancer cell alterations. We have demonstrated the efficacy of an innovative approach for pancreatic cancer based on mesenchymal stromal cells (MSC) genetically engineered to produce TNF-related Apoptosis Inducing Ligand (TRAIL).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive adult cancers with an unacceptable prognosis. For this reason novel therapies accounting for PDAC peculiarities, such as the relevant stromal reaction, are urgently needed. Here adipose mesenchymal stromal/stem cells (AD-MSC) have been armed to constantly release a soluble trimeric and multimeric variant of the known anti-cancer TNF-related apoptosis-inducing ligand (sTRAIL).

View Article and Find Full Text PDF

Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens.

View Article and Find Full Text PDF

Objectives: Mesenchymal stromal/stem cells have immunosuppressive functions. Our previous results demonstrated that one of the players of this immunomodulation can be ascribed to the Human Leukocyte Antigen-G. HLA-G, a non classical HLA class I antigen, is involved in immune tolerance during pregnancy, organ transplantation, autoimmune and inflammatory diseases.

View Article and Find Full Text PDF

Tumor stroma (TS) plays relevant roles in all steps of cancer development. We here address several fundamental aspects related with the interaction between cancer cells and their stromal counterparts. Dissecting these players is of pivotal importance to understand oncogenesis, immunoescape and drug resistance.

View Article and Find Full Text PDF

Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions.

View Article and Find Full Text PDF

Sarcomas are frequent tumors in children and young adults that, despite a relative chemo-sensitivity, show high relapse rates with up to 80% of metastatic patients dying in 5 years from diagnosis. The real ontogeny of sarcomas is still debated and evidences suggest they may derive from precursors identified within mesenchymal stromal/stem cells (MSC) fractions. Recent studies on sarcoma microenvironment additionally indicated that MSC could take active part in generation of a supportive stroma.

View Article and Find Full Text PDF

Mesenchymal stromal/stem cells (MSCs) reveal progenitor cells-like features including proliferation and differentiation capacities. One of the most historically recognized sources of MSC has been the bone marrow, while other sources recently include adipose tissue, teeth, bone, muscle, placenta, liver, pancreas, umbilical cord, and cord blood. Frequently, progenitor isolation requires traumatic procedures that are poorly feasible and associated with patient discomfort.

View Article and Find Full Text PDF