Publications by authors named "Filippo Molica"

Despite the discovery and prevalent clinical use of potent lipid-lowering therapies, including statins and PCSK9 inhibitors, cardiovascular diseases (CVD) caused by atherosclerosis remain a large unmet clinical need, accounting for frequent deaths worldwide. The pathogenesis of atherosclerosis is a complex process underlying the presence of modifiable and non-modifiable risk factors affecting several cell types including endothelial cells (ECs), monocytes/macrophages, smooth muscle cells (SMCs) and T cells. Heterogeneous composition of the plaque and its morphology could lead to rupture or erosion causing thrombosis, even a sudden death.

View Article and Find Full Text PDF

Pannexin1 (Panx1) ATP channels are important in adipocyte biology, potentially influencing energy storage and expenditure. We compared the metabolic phenotype of young (14 weeks old) and mature (20 weeks old) wild-type (WT) and mice exposed or not to cold (6 °C) during 28 days, a condition promoting adipocyte browning. Young mice weighed less and exhibited increased fat mass, improved glucose tolerance, and lower insulin sensitivity than WT mice.

View Article and Find Full Text PDF

The lymphatic network of capillaries and collecting vessels ensures tissue fluid homeostasis, absorption of dietary fats and trafficking of immune cells. Pannexin1 (Panx1) channels allow for the passage of ions and small metabolites between the cytosol and extracellular environment. Panx1 channels regulate the pathophysiological function of several tissues in a sex-dependent manner.

View Article and Find Full Text PDF

Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues and outperformed the linear native peptide. During adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native Panx1 sequence.

View Article and Find Full Text PDF

Aims: No effective therapy is available in clinics to protect the heart from ischaemia/reperfusion (I/R) injury. Endothelial cells are activated after I/R, which may drive the inflammatory response by releasing ATP through pannexin1 (Panx1) channels. Here, we investigated the role of Panx1 in cardiac I/R.

View Article and Find Full Text PDF

An exaggerated inflammatory response is the hallmark of a plethora of disorders. ATP is a central signaling molecule that orchestrates the initiation and resolution of the inflammatory response by enhancing activation of the inflammasome, leukocyte recruitment and activation of T cells. ATP can be released from cells through pannexin (Panx) channels, a family of glycoproteins consisting of three members, Panx1, Panx2, and Panx3.

View Article and Find Full Text PDF

This review highlights current knowledge on the expression and function of connexins and pannexins, transmembrane channel proteins that play an important role in intercellular communication, in both the developing and mature lymphatic vasculature. A particular focus is given to the involvement of these proteins in functions of the healthy lymphatic system. We describe their influence on the maintenance of extracellular fluid homeostasis, immune cell trafficking to draining lymph nodes and dietary nutrient absorption by intestinal villi.

View Article and Find Full Text PDF

Despite continuous medical advances, atherosclerosis remains the prime cause of mortality worldwide. Emerging findings on brown and beige adipocytes highlighted that these fat cells share the specific ability of non-shivering thermogenesis due to the expression of uncoupling protein 1. Brown fat is established during embryogenesis, and beige cells emerge from white adipose tissue exposed to specific stimuli like cold exposure into a process called browning.

View Article and Find Full Text PDF

Endothelial dysfunction worsens when body mass index (BMI) increases. Pannexin1 (Panx1) ATP release channels regulate endothelial function and lipid homeostasis in mice. We investigated whether the Panx1-400A>C single nucleotide polymorphism (SNP), encoding for a gain-of-function channel, associates with endothelial dysfunction in non-obese and obese individuals.

View Article and Find Full Text PDF

Background: Hemostasis is a tightly regulated physiological process to rapidly induce hemostatic plugs at sites of vascular injury. Inappropriate activation of this process may lead to thrombosis, i.e.

View Article and Find Full Text PDF

Background: The incidence of acute cardiovascular complications is highly time-of-day dependent. However, the mechanisms driving rhythmicity of ischemic vascular events are unknown. Although enhanced numbers of leukocytes have been linked to an increased risk of cardiovascular complications, the role that rhythmic leukocyte adhesion plays in different vascular beds has not been studied.

View Article and Find Full Text PDF

Fructose is widely used as a sweetener in processed food and is also associated with metabolic disorders, such as obesity. However, the underlying cellular mechanisms remain unclear, in particular, regarding the pancreatic β-cell. Here, we investigated the effects of chronic exposure to fructose on the function of insulinoma cells and isolated mouse and human pancreatic islets.

View Article and Find Full Text PDF

Shear stress, a blood flow-induced frictional force, is essential in the control of endothelial cell (EC) homeostasis. High laminar shear stress (HLSS), as observed in straight parts of arteries, assures a quiescent non-activated endothelium through the induction of Krüppel-like transcription factors (KLFs). Connexin40 (Cx40)-mediated gap junctional communication is known to contribute to a healthy endothelium by propagating anti-inflammatory signals between ECs, however, the molecular basis of the transcriptional regulation of Cx40 as well as its downstream effectors remain poorly understood.

View Article and Find Full Text PDF

Connexins (Cxs) and pannexins (Panxs) are ubiquitous membrane channel forming proteins that are critically involved in many aspects of vascular physiology and pathology. The permeation of ions and small metabolites through Panx channels, Cx hemichannels and gap junction channels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. This review provides an overview of current knowledge with respect to the pathophysiological role of these channels in large arteries, the microcirculation, veins, the lymphatic system and platelet function.

View Article and Find Full Text PDF
Article Synopsis
  • Dendritic cells (DCs) migrate through lymphatic vessels to present antigens to T cells, guided by the CCR7 receptor and CCL21 chemotactic gradient.
  • * In a study on bone marrow-derived dendritic cells (BMDCs), mutations in the gap junction protein Cx43 were found to negatively affect the migration of DCs in response to CCL21 compared to wild-type cells.
  • * The findings indicate that a fully functional Cx43 is crucial for the efficiency and directionality of DC migration, which could influence the immune response.
View Article and Find Full Text PDF

Extracellular ATP is a central signaling molecule in inflammatory responses. Pannexin1 (Panx1) channels release ATP in a controlled manner and have been implicated in various inflammatory pathologies, but their role in atherogenesis remains elusive. Using atherosclerosis-susceptible mouse models with ubiquitous deletion of Panx1 (Panx1 Apoe ) or with Cre recombinase-mediated deletion of Panx1 in endothelial cells and monocytes (Tie2-Cre Panx1 Apoe ; Panx1 Apoe ), we identified a novel role for Panx1 in the lymphatic vasculature.

View Article and Find Full Text PDF

Turbidimetry is a laboratory technique that is applied to measure the aggregation of platelets suspended in either plasma (platelet-rich plasma, PRP) or in buffer (washed platelets), by the use of one or a combination of agonists. The use of washed platelets separated from their plasma environment and in the absence of anticoagulants allows for studying intrinsic platelet properties. Among the large panel of agonists, arachidonic acid (AA), adenosine di-phosphate (ADP), thrombin and collagen are the most frequently used.

View Article and Find Full Text PDF

The three major blood cell types, i.e., platelets, erythrocytes and leukocytes, are all produced in the bone marrow.

View Article and Find Full Text PDF

Pannexin1 (Panx1), a membrane channel-forming protein permitting the passage of small-sized molecules, such as ATP, is expressed in human platelets. Recently, we showed that inhibiting Panx1 affects collagen-induced platelet aggregation but not aggregation triggered by other agonists. We also found that a single nucleotide polymorphism (SNP; rs1138800) in the Panx1 gene encoded for a gain-of-function channel (Panx1-400C) and was associated with enhanced collagen-induced platelet reactivity.

View Article and Find Full Text PDF

Obesity, and especially excessive visceral adipose tissue accumulation, is considered as a low-grade inflammatory state that is responsible for adipocyte dysfunction and associated metabolic disorders. Adipose tissue displays endocrine functions by releasing pro- or anti-inflammatory bioactive molecules named adipokines. An altered expression of these molecules, provoked by obesity or adipocyte dysregulation, contributes to major metabolic diseases such as insulin resistance and type 2 diabetes mellitus that are important risk factors for cardiovascular disease.

View Article and Find Full Text PDF

Connexins (Cxs) form a family of transmembrane proteins comprising 21 members in humans. Cxs differ in their expression patterns, biophysical properties and ability to combine into homomeric or heteromeric gap junction channels between neighbouring cells. The permeation of ions and small metabolites through gap junction channels or hemichannels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis.

View Article and Find Full Text PDF

Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury.

View Article and Find Full Text PDF

Endocannabinoids are endogenous bioactive lipids ubiquitously distributed in several tissues (e.g., brain, adipose tissue, liver, heart and arterial vessels), which play a crucial role in atherosclerosis.

View Article and Find Full Text PDF

Cannabinoid receptor CB(2) activation inhibits inflammatory proliferation and migration of vascular smooth muscle cells in vitro. The potential in vivo relevance of these findings is unclear. We performed carotid balloon distension injury in hypercholesterolemic apolipoprotein E knockout (ApoE(-/-)) mice receiving daily intraperitoneal injection of the CB(2) agonist JWH133 (5 mg/kg) or vehicle, with the first injection given 30 min before injury.

View Article and Find Full Text PDF