Proc Natl Acad Sci U S A
December 2024
Fact checking can be an effective strategy against misinformation, but its implementation at scale is impeded by the overwhelming volume of information online. Recent AI language models have shown impressive ability in fact-checking tasks, but how humans interact with fact-checking information provided by these models is unclear. Here, we investigate the impact of fact-checking information generated by a popular large language model (LLM) on belief in, and sharing intent of, political news headlines in a preregistered randomized control experiment.
View Article and Find Full Text PDFSocial media, seen by some as the modern public square, is vulnerable to manipulation. By controlling inauthentic accounts impersonating humans, malicious actors can amplify disinformation within target communities. The consequences of such operations are difficult to evaluate due to the challenges posed by collecting data and carrying out ethical experiments that would influence online communities.
View Article and Find Full Text PDFThe world's digital information ecosystem continues to struggle with the spread of misinformation. Prior work has suggested that users who consistently disseminate a disproportionate amount of low-credibility content-so-called superspreaders-are at the center of this problem. We quantitatively confirm this hypothesis and introduce simple metrics to predict the top superspreaders several months into the future.
View Article and Find Full Text PDFAutomated accounts on social media that impersonate real users, often called "social bots," have received a great deal of attention from academia and the public. Here we present experiments designed to investigate public perceptions and policy preferences about social bots, in particular how they are affected by exposure to bots. We find that before exposure, participants have some biases: they tend to overestimate the prevalence of bots and see others as more vulnerable to bot influence than themselves.
View Article and Find Full Text PDFBackground: An infodemic is excess information, including false or misleading information, that spreads in digital and physical environments during a public health emergency. The COVID-19 pandemic has been accompanied by an unprecedented global infodemic that has led to confusion about the benefits of medical and public health interventions, with substantial impact on risk-taking and health-seeking behaviors, eroding trust in health authorities and compromising the effectiveness of public health responses and policies. Standardized measures are needed to quantify the harmful impacts of the infodemic in a systematic and methodologically robust manner, as well as harmonizing highly divergent approaches currently explored for this purpose.
View Article and Find Full Text PDFBackground: Vaccinations play a critical role in mitigating the impact of COVID-19 and other diseases. Past research has linked misinformation to increased hesitancy and lower vaccination rates. Gaps remain in our knowledge about the main drivers of vaccine misinformation on social media and effective ways to intervene.
View Article and Find Full Text PDFJ Comput Soc Sci
August 2022
Social bots have become an important component of online social media. Deceptive bots, in particular, can manipulate online discussions of important issues ranging from elections to public health, threatening the constructive exchange of information. Their ubiquity makes them an interesting research subject and requires researchers to properly handle them when conducting studies using social media data.
View Article and Find Full Text PDFOnline social media are key platforms for the public to discuss political issues. As a result, researchers have used data from these platforms to analyze public opinions and forecast election results. The literature has shown that due to inauthentic actors such as malicious social bots and trolls, not every message is a genuine expression from a legitimate user.
View Article and Find Full Text PDFWidespread uptake of vaccines is necessary to achieve herd immunity. However, uptake rates have varied across U.S.
View Article and Find Full Text PDFNewsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a website's audience as a quality signal.
View Article and Find Full Text PDFSocial media platforms attempting to curb abuse and misinformation have been accused of political bias. We deploy neutral social bots who start following different news sources on Twitter, and track them to probe distinct biases emerging from platform mechanisms versus user interactions. We find no strong or consistent evidence of political bias in the news feed.
View Article and Find Full Text PDFThe massive spread of digital misinformation has been identified as a major threat to democracies. Communication, cognitive, social, and computer scientists are studying the complex causes for the viral diffusion of misinformation, while online platforms are beginning to deploy countermeasures. Little systematic, data-based evidence has been published to guide these efforts.
View Article and Find Full Text PDFAlgorithms that favor popular items are used to help us select among many choices, from top-ranked search engine results to highly-cited scientific papers. The goal of these algorithms is to identify high-quality items such as reliable news, credible information sources, and important discoveries-in short, high-quality content should rank at the top. Prior work has shown that choosing what is popular may amplify random fluctuations and lead to sub-optimal rankings.
View Article and Find Full Text PDFMassive amounts of fake news and conspiratorial content have spread over social media before and after the 2016 US Presidential Elections despite intense fact-checking efforts. How do the spread of misinformation and fact-checking compete? What are the structural and dynamic characteristics of the core of the misinformation diffusion network, and who are its main purveyors? How to reduce the overall amount of misinformation? To explore these questions we built Hoaxy, an open platform that enables large-scale, systematic studies of how misinformation and fact-checking spread and compete on Twitter. Hoaxy captures public tweets that include links to articles from low-credibility and fact-checking sources.
View Article and Find Full Text PDFTraditional fact checking by expert journalists cannot keep up with the enormous volume of information that is now generated online. Computational fact checking may significantly enhance our ability to evaluate the veracity of dubious information. Here we show that the complexities of human fact checking can be approximated quite well by finding the shortest path between concept nodes under properly defined semantic proximity metrics on knowledge graphs.
View Article and Find Full Text PDFOnline traces of human activity offer novel opportunities to study the dynamics of complex knowledge exchange networks, in particular how emergent patterns of collective attention determine what new information is generated and consumed. Can we measure the relationship between demand and supply for new information about a topic? We propose a normalization method to compare attention bursts statistics across topics with heterogeneous distribution of attention. Through analysis of a massive dataset on traffic to Wikipedia, we find that the production of new knowledge is associated to significant shifts of collective attention, which we take as proxy for its demand.
View Article and Find Full Text PDFWe have a limited understanding of the factors that make people influential and topics popular in social media. Are users who comment on a variety of matters more likely to achieve high influence than those who stay focused? Do general subjects tend to be more popular than specific ones? Questions like these demand a way to detect the topics hidden behind messages associated with an individual or a keyword, and a gauge of similarity among these topics. Here we develop such an approach to identify clusters of similar hashtags in Twitter by detecting communities in the hashtag co-occurrence network.
View Article and Find Full Text PDFHow does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered.
View Article and Find Full Text PDFWe examine the temporal evolution of digital communication activity relating to the American anti-capitalist movement Occupy Wall Street. Using a high-volume sample from the microblogging site Twitter, we investigate changes in Occupy participant engagement, interests, and social connectivity over a fifteen month period starting three months prior to the movement's first protest action. The results of this analysis indicate that, on Twitter, the Occupy movement tended to elicit participation from a set of highly interconnected users with pre-existing interests in domestic politics and foreign social movements.
View Article and Find Full Text PDFSocial movements rely in large measure on networked communication technologies to organize and disseminate information relating to the movements' objectives. In this work we seek to understand how the goals and needs of a protest movement are reflected in the geographic patterns of its communication network, and how these patterns differ from those of stable political communication. To this end, we examine an online communication network reconstructed from over 600,000 tweets from a thirty-six week period covering the birth and maturation of the American anticapitalist movement, Occupy Wall Street.
View Article and Find Full Text PDFThe birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists.
View Article and Find Full Text PDF