Publications by authors named "Filippo Maria Bianchi"

Otoliths (ear-stones) in the inner ears of vertebrates containing visible year zones are used extensively to determine fish age. Analysis of otoliths is a time-consuming and difficult task that requires the education of human experts. Human age estimates are inconsistent, as several readings by the same human expert might result in different ages assigned to the same otolith, in addition to an inherent bias between readers.

View Article and Find Full Text PDF

This article presents a novel probabilistic forecasting method called ensemble conformalized quantile regression (EnCQR). EnCQR constructs distribution-free and approximately marginally valid prediction intervals (PIs), which are suitable for nonstationary and heteroscedastic time series data. EnCQR can be applied on top of a generic forecasting model, including deep learning architectures.

View Article and Find Full Text PDF

Many recent works in the field of graph machine learning have introduced pooling operators to reduce the size of graphs. In this article, we present an operational framework to unify this vast and diverse literature by describing pooling operators as the combination of three functions: selection, reduction, and connection (SRC). We then introduce a taxonomy of pooling operators, based on some of their key characteristics and implementation differences under the SRC framework.

View Article and Find Full Text PDF

Image translation with convolutional autoencoders has recently been used as an approach to multimodal change detection (CD) in bitemporal satellite images. A main challenge is the alignment of the code spaces by reducing the contribution of change pixels to the learning of the translation function. Many existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available.

View Article and Find Full Text PDF

We estimate the weekly excess all-cause mortality in Norway and Sweden, the years of life lost (YLL) attributed to COVID-19 in Sweden, and the significance of mortality displacement. We computed the expected mortality by taking into account the declining trend and the seasonality in mortality in the two countries over the past 20 years. From the excess mortality in Sweden in 2019/20, we estimated the YLL attributed to COVID-19 using the life expectancy in different age groups.

View Article and Find Full Text PDF

Popular graph neural networks implement convolution operations on graphs based on polynomial spectral filters. In this paper, we propose a novel graph convolutional layer inspired by the auto-regressive moving average (ARMA) filter that, compared to polynomial ones, provides a more flexible frequency response, is more robust to noise, and better captures the global graph structure. We propose a graph neural network implementation of the ARMA filter with a recursive and distributed formulation, obtaining a convolutional layer that is efficient to train, localized in the node space, and can be transferred to new graphs at test time.

View Article and Find Full Text PDF

In graph neural networks (GNNs), pooling operators compute local summaries of input graphs to capture their global properties, and they are fundamental for building deep GNNs that learn hierarchical representations. In this work, we propose the Node Decimation Pooling (NDP), a pooling operator for GNNs that generates coarser graphs while preserving the overall graph topology. During training, the GNN learns new node representations and fits them to a pyramid of coarsened graphs, which is computed offline in a preprocessing stage.

View Article and Find Full Text PDF

As of November 2020, the number of COVID-19 cases was increasing rapidly in many countries. In Europe, the virus spread slowed considerably in the late spring due to strict lockdown, but a second wave of the pandemic grew throughout the fall. In this study, we first reconstruct the time evolution of the effective reproduction numbers R(t) for each country by integrating the equations of the classic Susceptible-Infectious-Recovered (SIR) model.

View Article and Find Full Text PDF

Classification of multivariate time series (MTS) has been tackled with a large variety of methodologies and applied to a wide range of scenarios. Reservoir computing (RC) provides efficient tools to generate a vectorial, fixed-size representation of the MTS that can be further processed by standard classifiers. Despite their unrivaled training speed, MTS classifiers based on a standard RC architecture fail to achieve the same accuracy of fully trainable neural networks.

View Article and Find Full Text PDF

A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs).

View Article and Find Full Text PDF

In this paper, we elaborate over the well-known interpretability issue in echo-state networks (ESNs). The idea is to investigate the dynamics of reservoir neurons with time-series analysis techniques developed in complex systems research. Notably, we analyze time series of neuron activations with recurrence plots (RPs) and recurrence quantification analysis (RQA), which permit to visualize and characterize high-dimensional dynamical systems.

View Article and Find Full Text PDF

It is a widely accepted fact that the computational capability of recurrent neural networks (RNNs) is maximized on the so-called "edge of criticality." Once the network operates in this configuration, it performs efficiently on a specific application both in terms of: 1) low prediction error and 2) high short-term memory capacity. Since the behavior of recurrent networks is strongly influenced by the particular input signal driving the dynamics, a universal, application-independent method for determining the edge of criticality is still missing.

View Article and Find Full Text PDF

We approach the problem of forecasting the load of incoming calls in a cell of a mobile network using Echo State Networks. With respect to previous approaches to the problem, we consider the inclusion of additional telephone records regarding the activity registered in the cell as exogenous variables, by investigating their usefulness in the forecasting task. Additionally, we analyze different methodologies for training the readout of the network, including two novel variants, namely ν-SVR and an elastic net penalty.

View Article and Find Full Text PDF