Dopants and alloying elements are commonly introduced in amorphous carbon (a-C) materials to tailor their mechanical and tribological properties. While most published studies have focused on doping and alloying a-C coatings with metals or metalloids, doping a-C films with rare-earth elements has only recently been explored. Notably, our understanding of the shear-induced structural changes occurring in rare-earth-element-containing a-C films is still elusive, even in the absence of any liquid lubricants.
View Article and Find Full Text PDFWith over 6 million tons produced annually, thermoplastic elastomers (TPEs) have become ubiquitous in modern society, due to their unique combination of elasticity, toughness, and reprocessability. Nevertheless, industrial TPEs display a tradeoff between softness and strength, along with low upper service temperatures, typically ≤100 °C. This limits their utility, such as in bio-interfacial applications where supersoft deformation is required in tandem with strength, in addition to applications that require thermal stability (e.
View Article and Find Full Text PDFMolybdenum disulfide (MoS) coatings have attracted widespread industrial interest owing to their excellent lubricating properties under vacuum and inert conditions. Unfortunately, the increase in MoS interfacial shear strength following prolonged exposure to ambient conditions (a process referred to as "aging") has resulted in reliability issues when MoS is employed as solid lubricant. While aging of MoS is generally attributed to physical and chemical changes caused by adsorbed water and/or oxygen, a mechanistic understanding of the relative role of these two gaseous species in the evolution of the surface chemistry of MoS is still elusive.
View Article and Find Full Text PDFAccess to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate.
View Article and Find Full Text PDFFreezing techniques are an essential part of biologics manufacturing processes, yet the formation of ice/water interfaces can impart detrimental effects on proteins. However, the absence of chemical and structural differences between ice and liquid water poses the question as to why ice can destabilize proteins. We hypothesize that the destabilizing stress of the ice-liquid water interface does not originate from the ice-water system itself but rather from the air microbubbles present during the freezing process.
View Article and Find Full Text PDFBiological macromolecules, especially therapeutic proteins, are delicate and highly sensitive to denaturation from stresses encountered during the manufacture of dosage forms. Thin-film freeze-drying (TFFD) and spray freeze-drying (SFD) are two processes used to convert liquid forms of protein into dry powders. In the production of inhalable dry powders that contain proteins, these potential stressors fall into three categories based on their occurrence during the primary steps of the process: (1) droplet formation (e.
View Article and Find Full Text PDFIonic liquids (ILs) have attracted considerable attention in several sectors (from energy storage to catalysis, from drug delivery to separation media) owing to their attractive properties, such as high thermal stability, wide electrochemical window, and high ionic conductivity. However, their high viscosity and surface tension compared to conventional organic solvents can lead to unfavorable transport properties. To circumvent undesired kinetics effects limiting mass transfer, the discretization of ILs into small droplets has been proposed as a method to increase the effective surface area and the rates of mass transfer.
View Article and Find Full Text PDFIn this work, we perform atomic force microscopy (AFM) experiments to evaluate the dependence of the structural morphology of trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P][DEHP]) ionic liquid (IL) on applied pressure. The experimental results obtained upon sliding a diamond-like-carbon-coated silicon AFM tip on mechanically polished steel at an applied pressure up to 5.5 ± 0.
View Article and Find Full Text PDFThe molecular-level orientation and structure of ionic liquids (ILs) at liquid-solid interfaces are significantly different than in the bulk. The interfacial ordering influences both IL properties, such as dielectric constants and viscosity, and their efficacy in devices, such as fuel cells and electrical capacitors. Here, we report the layered structures of four ILs on unbiased, highly ordered pyrolytic graphite (HOPG) and Pt(111) surfaces, as determined by atomic force microscopy.
View Article and Find Full Text PDFMolybdenum trioxide (MoO), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO. However, the realization of large-area true 2D (single to few atom layers thick) MoO is yet to be achieved.
View Article and Find Full Text PDFThe incorporation of silicon and oxygen into hydrogenated amorphous carbon (a-C:H) is an effective approach to decrease the dependence of the tribological properties of a-C:H on the environment. Here, we evaluate the effect of hydrogen and oxygen partial pressures in vacuum on the tribological response of steel pins sliding against films consisting of silicon- and oxygen-containing a-C:H (a-C:H:Si:O). Experiments are conducted in the low-friction/low-wear regime, where sufficient gas pressure prevents steel from adhering to the a-C:H:Si:O, with the velocity accommodation mode being interfacial sliding between the tribotrack formed in the a-C:H:Si:O film and the carbonaceous tribofilm that is formed on the countersurface.
View Article and Find Full Text PDFSilicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coatings are amorphous thin-film materials composed of hydrogenated amorphous carbon (a-C:H), doped with silicon and oxygen. Compared to a-C:H, a-C:H:Si:O exhibits much lower susceptibility to oxidative degradation and higher thermal stability, making a-C:H:Si:O attractive for many applications. However, the physical mechanisms for this improved behavior are not understood.
View Article and Find Full Text PDFThe unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry.
View Article and Find Full Text PDFThe characterization of the local bonding configuration of carbon in carbon-based materials is of paramount importance since the properties of such materials strongly depend on the distribution of carbon hybridization states, the local ordering, and the degree of hydrogenation. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy is one of the most powerful techniques for gaining insights into the bonding configuration of near-surface carbon atoms. The common methodology for quantitatively evaluating the carbon hybridization state using C 1s NEXAFS measurements, which is based on the analysis of the sample of interest and of a highly ordered pyrolytic graphite (HOPG) reference sample, was reviewed and critically assessed, noting that inconsistencies are found in the literature in applying this method.
View Article and Find Full Text PDFNear-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique.
View Article and Find Full Text PDFThe surface chemistry of amorphous zinc polyphosphates of different compositions (ranging from zinc metaphosphate to zinc orthophosphate) has been investigated by means of X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). The identification of the chain length of zinc polyphosphates by XPS was on the basis of the integrated intensity ratio of the bridging (P-O-P) and nonbridging (P = O and P-O-M) oxygen peaks used for fitting the oxygen 1s signal, the shift of the P 2p(3/2) signal towards lower binding energies and the modified Auger parameter towards higher values as the zinc content increases. The discrimination of the polyphosphate chain lengths was also achieved by ToF-SIMS, by comparing the intensities of selected characteristic phosphate fragments.
View Article and Find Full Text PDFControl over faceting in nanocrystals (NCs) is pivotal for many applications, but most notably when investigating catalytic reactions which occur on the surfaces of nanostructures. Anatase titanium dioxide (TiO(2)) is one of the most studied photocatalysts, but the shape dependence of its activity has not yet been satisfactorily investigated and many questions still remain unanswered. We report the nonaqueous surfactant-assisted synthesis of highly uniform anatase TiO(2) NCs with tailorable morphology in the 10-100 nm size regime, prepared through a seeded growth technique.
View Article and Find Full Text PDF