Dopant atoms are used to control the properties of semiconductors in most electronic devices. Recent advances such as single-ion implantation have allowed the precise positioning of single dopants in semiconductors as well as the fabrication of single-atom transistors, representing steps forward in the realization of quantum circuits. However, the interactions between dopant atoms have only been studied in systems containing large numbers of dopants, so it has not been possible to explore fundamental phenomena such as the Anderson-Mott transition between conduction by sequential tunnelling through isolated dopant atoms, and conduction through thermally activated impurity Hubbard bands.
View Article and Find Full Text PDF