Among transition metal oxides, MnO is of considerable importance for various technological end-uses, from heterogeneous catalysis to gas sensing, owing to its structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO nanomaterials by a catalyst-free, plasma-assisted process starting from a fluorinated manganese(II) molecular source in Ar/O plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and morphology revealed the formation of F-doped, oxygen-deficient, MnO-based nanomaterials, with a fluorine content tunable as a function of growth temperature ( T).
View Article and Find Full Text PDFSupported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates using plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(ii) diamine diketonate precursor. Growth experiments yielded β-MnO2 with a hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation also enabled a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions.
View Article and Find Full Text PDF