Publications by authors named "Filippo Giancotti"

Hematopoietic stem and progenitor cells (HSPCs) maintain blood-forming and immune activity, yet intrinsic regulators of HSPCs remain elusive. STAT3 function in HSPCs has been difficult to dissect as Stat3-deficiency in the hematopoietic compartment induces systemic inflammation, which can impact HSPC activity. Here, we developed mixed bone marrow (BM) chimeric mice with inducible Stat3 deletion in 20% of the hematopoietic compartment to avoid systemic inflammation.

View Article and Find Full Text PDF

The contribution of antitumor immunity to metastatic dormancy is poorly understood. Here we show that the long noncoding RNA Malat1 is required for tumor initiation and metastatic reactivation in mouse models of breast cancer and other tumor types. Malat1 localizes to nuclear speckles to couple transcription, splicing and mRNA maturation.

View Article and Find Full Text PDF

Long term survival of breast cancer patients is limited due to recurrence from metastatic dormant cancer cells. However, the mechanisms by which these dormant breast cancer cells survive and awaken remain poorly understood. Our unbiased genome-scale genetic screen in mice identified as a novel cancer-cell intrinsic gatekeeper in metastatic reactivation.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells.

View Article and Find Full Text PDF

Metastatic colorectal cancer (mCRC) remains a lethal disease with an approximately 14% 5-year survival rate. While early-stage colorectal cancer (CRC) can be cured by surgery with or without adjuvant chemotherapy, mCRC cannot be eradicated due to a large burden of disseminated cancer cells comprising therapy-resistant metastasis-competent cells. To address this gap, recent studies have focused on further elucidating the molecular mechanisms underlying colorectal metastasis and recognizing the limitations of available therapeutic interventions.

View Article and Find Full Text PDF

STAT3 function in hematopoietic stem and progenitor cells (HSPCs) has been difficult to discern as deficiency in the hematopoietic system induces systemic inflammation, which can impact HSPC activity. To address this, we established mixed bone marrow (BM) chimeric mice with CreER-mediated deletion in 20% of the hematopoietic compartment. -deficient HSPCs had impaired hematopoietic activity and failed to undergo expansion in BM in contrast to -sufficient (CreER) controls.

View Article and Find Full Text PDF
Article Synopsis
  • Semaphorins, initially known for guiding nerve axons, also play significant roles in processes like blood vessel development and tumor formation, though their signaling pathways in these processes are not fully understood.
  • The research reveals that class 3 Semaphorins (SEMA3s) activate the Hippo pathway, which helps control tissue growth, blood vessel formation, and cancer development by stimulating key Hippo kinases (LATS1/2) in lung cancer cells.
  • The study finds that p190RhoGAPs are crucial for SEMA3A receptor (PlexinA) interaction in Hippo regulation, and factors like genetic changes can impair this signaling pathway's effectiveness.
View Article and Find Full Text PDF

Bioinformatic analysis of 94 patient-derived xenografts (PDXs), cell lines, and organoids (PCOs) identifies three intrinsic transcriptional subtypes of metastatic castration-resistant prostate cancer: androgen receptor (AR) pathway + prostate cancer (PC) (ARPC), mesenchymal and stem-like PC (MSPC), and neuroendocrine PC (NEPC). A sizable proportion of castration-resistant and metastatic stage PC (M-CRPC) cases are admixtures of ARPC and MSPC. Analysis of clinical datasets and mechanistic studies indicates that MSPC arises from ARPC as a consequence of therapy-induced lineage plasticity.

View Article and Find Full Text PDF
Article Synopsis
  • Inhibiting mTORC1 signaling could help slow the growth of meningiomas and schwannomas, and everolimus, an mTORC1 inhibitor, shows potential in patients with neurofibromatosis type 2 (NF2) who have vestibular schwannoma.
  • A presurgical clinical trial was conducted where patients took everolimus for 10 days before surgery, allowing researchers to analyze its effects on drug levels and tumor samples.
  • Results showed that while everolimus achieved high blood concentrations, it only partially inhibited mTORC1 signaling in tumors, suggesting reasons for its limited effectiveness in treating these tumors and guiding future research.
View Article and Find Full Text PDF

Background And Objectives: Transcriptomic landscape of prostate cancer (PCa) shows multidimensional variability, potentially arising from the cell-of-origin, reflected in serum markers, and most importantly related to drug sensitivities. For example, Aggressive Variant Prostate Cancer (AVPC) presents low PSA per tumor burden, and characterized by de novo resistance to androgen receptor signaling inhibitors (ARIs). Understanding PCa transcriptomic complexity can provide biological insight and therapeutic guidance.

View Article and Find Full Text PDF

The mechanisms that enable immune evasion at metastatic sites are poorly understood. We show that the Polycomb Repressor Complex 1 (PRC1) drives colonization of the bones and visceral organs in double-negative prostate cancer (DNPC). In vivo genetic screening identifies CCL2 as the top prometastatic gene induced by PRC1.

View Article and Find Full Text PDF

In spite of an initial clinical response to androgen deprivation therapy (ADT), the majority of prostate cancer patients eventually develop castration-resistant prostate cancer (CRPC). Recent studies have highlighted the role of epithelial plasticity, including transdifferentiation and epithelial-to-mesenchymal transition (EMT), in the development of AR pathway-negative CRPC, a form of the disease that has increased in incidence after the introduction of potent AR inhibitors. In this review, we will discuss the switches between different cell fates that occur in response to AR blockade or acquisition of specific oncogenic mutations, such as those in TP53 and RB1, during the evolution to CRPC.

View Article and Find Full Text PDF

The activated B cell (ABC-like) subtype of diffuse large B cell lymphoma (DLBCL) is characterized by chronic activation of signaling initiated by immunoglobulin μ (IgM). By analyzing the DNA copy number profiles of 1000 DLBCL tumors, we identified gains of 18q21.2 as the most frequent genetic alteration in ABC-like DLBCL.

View Article and Find Full Text PDF

Integrins mediate cell adhesion and transmit mechanical and chemical signals to the cell interior. Various mechanisms deregulate integrin signaling in cancer, empowering tumor cells with the ability to proliferate without restraint, to invade through tissue boundaries, and to survive in foreign microenvironments. Recent studies have revealed that integrin signaling drives multiple stem cell functions, including tumor initiation, epithelial plasticity, metastatic reactivation, and resistance to oncogene- and immune-targeted therapies.

View Article and Find Full Text PDF

In the version of this Article originally published the same blot was inadvertently presented as both p-Rb and Cyclin A in Fig. 2a. This blot corresponds to the p-Rb panel, as can be seen in the unprocessed version of these blots in Supplementary Fig.

View Article and Find Full Text PDF

In the version of this Article originally published, the authors inadvertently included the term 'pericytic mimicry' in relation to ref. 54. This has now been corrected by inserting an additional reference at position 51 and amending the text in the Discussion relating to 'pericytic mimicry', ref.

View Article and Find Full Text PDF

Metastatic seeding by disseminated cancer cells principally occurs in perivascular niches. Here, we show that mechanotransduction signalling triggered by the pericyte-like spreading of disseminated cancer cells on host tissue capillaries is critical for metastatic colonization. Disseminated cancer cells employ L1CAM (cell adhesion molecule L1) to spread on capillaries and activate the mechanotransduction effectors YAP (Yes-associated protein) and MRTF (myocardin-related transcription factor).

View Article and Find Full Text PDF

Inactivation of /Merlin causes the autosomal-dominant cancer predisposition syndrome familial neurofibromatosis type 2 (NF2) and contributes to the development of malignant pleural mesothelioma (MPM). To develop a targeted therapy for -mutant tumors, we have exploited the recent realization that Merlin loss drives tumorigenesis by activating the E3 ubiquitin ligase CRL4, thereby inhibiting the Hippo pathway component Lats. Here, we show that MLN4924, a NEDD8-activating enzyme (NAE) inhibitor, suppresses CRL4 and attenuates activation of YAP in -mutant tumor cells.

View Article and Find Full Text PDF

The molecular mechanisms governing self-renewal and differentiation of the mammary epithelium are incompletely defined; a better understanding of the events implicated in the specification and expansion of luminal progenitors is of particular importance as many breast cancers originate from their transformation. Britschgi et al. found that, in addition to phosphorylating and inactivating YAP, LATS functions as a scaffold to facilitate estrogen receptor-α ubiquitylation by the E3 ligase CRL4 and consequently suppresses luminal progenitor specification and expansion.

View Article and Find Full Text PDF

Renal cell carcinomas with unclassified histology (uRCC) constitute a significant portion of aggressive non-clear cell renal cell carcinomas that have no standard therapy. The oncogenic drivers in these tumours are unknown. Here we perform a molecular analysis of 62 high-grade primary uRCC, incorporating targeted cancer gene sequencing, RNA sequencing, single-nucleotide polymorphism array, fluorescence in situ hybridization, immunohistochemistry and cell-based assays.

View Article and Find Full Text PDF

Genetic screening identifies the atypical tetraspanin TM4SF1 as a strong mediator of metastatic reactivation of breast cancer. Intriguingly, TM4SF1 couples the collagen receptor tyrosine kinase DDR1 to the cortical adaptor syntenin 2 and, hence, to PKCα. The latter kinase phosphorylates and activates JAK2, leading to the activation of STAT3.

View Article and Find Full Text PDF