Publications by authors named "Filippo Dell'Agnello"

Anthropogenic activities often lead to changes in the distribution and behavior of wild species. The mere presence of humans and free-roaming domestic cats () can affect wildlife communities; however, responses to these disturbances might not be ubiquitous and may vary with local conditions. We investigated European pine marten's () distribution on Elba Island, Italy, where the species is the only wild carnivore.

View Article and Find Full Text PDF

This work introduces a real-time intention decoding algorithm grounded in muscle synergies (Syn-ID). The algorithm detects the electromyographic (EMG) onset and infers the direction of the movement during reaching tasks to control a powered shoulder-elbow exoskeleton. Features related to muscle synergies are used in a Gaussian Mixture Model and probability accumulation-based logic to infer the user's movement direction.

View Article and Find Full Text PDF

To protect native wildlife, more than one hundred rodent eradications have been attempted in the Mediterranean islands by using anticoagulant rodenticides (ARs). Despite their high efficiency, resistance to ARs has been observed in many countries and it is mostly related to missense mutations (SNPs) in the VKORC1 gene. The presence of resistant individuals reduces the efficiency of rodent management, leading to an excessive use of ARs.

View Article and Find Full Text PDF

Passive ankle-foot prostheses are light-weighted and reliable, but they cannot generate net positive power, which is essential in restoring the natural gait pattern of amputees. Recent robotic prostheses addressed the problem by actively controlling the storage and release of energy generated during the stance phase through the mechanical deformation of elastic elements housed in the device. This study proposes an innovative low-power active prosthetic module that fits on off-the-shelf passive ankle-foot energy-storage-and-release (ESAR) prostheses.

View Article and Find Full Text PDF

Background: Rat eradication from islands is a very effective tool that can free entire ecosystems from the pressure of alien predators. In this study we present the case study of Ventotene (Ponziane Archipelago, central Italy), which to date is the island with by far the greatest number of human inhabitants ever freed from the negative implications of rats. Rat eradication was carried out in the framework of the Life PonDerat project, co-financed by the European Union.

View Article and Find Full Text PDF

NESM- γ is an upper-limb exoskeleton to train motor functions of post-stroke patients. Based on the kinesiology of the upper limb, the NESM- γ includes a four degrees-of-freedom (DOF) active kinematic chain for the shoulder and elbow, along with a passive chain for self-aligning robotic joint axes with the glenohumeral (GH) joint's center of rotation. The passive chain accounts for scapulohumeral rhythm and trunk rotations.

View Article and Find Full Text PDF

This work describes the design and preliminary characterization of a novel portable hand exoskeleton for poststroke rehabilitation. The platform actively mobilizes the index-metacarpophalangeal (I-MCP) joint, and it additionally offers individual rigid support to distal degrees of freedom (DoFs) of the index and thumb. The test-bench characterization proves the capability of the device to render torques at the I-MCP level with high fidelity within frequencies of interest for the application (up to 3 Hz).

View Article and Find Full Text PDF

This work presents an intention decoding algorithm that can be used to control a 4 degrees-of-freedom shoulder-elbow exoskeleton in reaching tasks. The algorithm was designed to assist the movement of users with upper-limb impairments who can initiate the movement by themselves. It relies on the observation of the initial part of the user's movement through joint angle measures and aims to estimate in real-time the phase of the movement and predict the goal position of the hand in the reaching task.

View Article and Find Full Text PDF

Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot-ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling.

View Article and Find Full Text PDF
Article Synopsis
  • Kinematic compatibility is essential for the effectiveness and acceptance of robotic devices in hand and finger rehabilitation, addressing trade-offs in adaptability and clinical data processing.
  • The study introduces a new kinematic chain designed to mobilize the metacarpophalangeal (MCP) joint, featuring a mathematical model for real-time joint angle and torque calculations, with a focus on self-alignment and effective force transfer.
  • Preliminary tests on an exoskeletal device, designed for traumatic-hand rehabilitation, show promising performance metrics such as joint angle estimation accuracy and minimal residual torque, paving the way for further clinical trials.
View Article and Find Full Text PDF

Evidence of abnormal coloration in wild animals provides useful information to better understand its adaptive function and its impact on survival. For this reason, we need to know the frequency and distribution of these abnormal phenotypes in wild populations. Here, we report two records of hypopigmentation in European pine marten , obtained during a camera-trapping survey on Elba Island, Central Italy.

View Article and Find Full Text PDF

Timely and reliable identification of control phases is functional to the control of a powered robotic lower-limb prosthesis. This study presents a commercial energy-store-and-release foot prosthesis instrumented with a multimodal sensory system comprising optoelectronic pressure sensors (PS) and IMU. The performance was verified with eight healthy participants, comparing signals processed by two different algorithms, based on PS and IMU, respectively, for real-time detection of heel strike (HS) and toe-off (TO) events and an estimate of relevant biomechanical variables such as vertical ground reaction force (vGRF) and center of pressure along the sagittal axis (CoPy).

View Article and Find Full Text PDF

Wearable robotic devices require sensors and algorithms that can recognize the user state in real-time, in order to provide synergistic action with the body. For devices intended for locomotion-related applications, shoe-embedded sensors are a common and convenient choice, potentially advantageous for performing gait assessment in real-world environments. In this work, we present the development of a pair of pressure-sensitive insoles based on optoelectronic sensors for the real-time estimation of temporal gait parameters.

View Article and Find Full Text PDF

The study of animal diet and feeding behaviour is a fundamental tool for the illustration of the ecological role of species in the ecosystem. However, size and quality of food intake samples make it hard for researchers to describe the diet composition of many small species. In our study, we exploited genomic tools for the analysis of the diet composition of the Savi's pine vole (Microtus savii) using DNA barcoding and qPCR techniques for the identification of ingested plant species retrieved from stomach contents.

View Article and Find Full Text PDF

Savi's pine vole (Microtus savii) is a rodent species of the Cricetidae family, inhabiting southern European agroecosystems. It is considered to be the main cause of rodent-attributed damage in Italy. To achieve an effective management, detailed knowledge of this species is needed.

View Article and Find Full Text PDF