Bacteria-mediated treatments gained increasing attention as alternative therapies against tumors. An attenuated mutant strain of Salmonella enterica serovar Typhimurium (STMΔznuABC) has recently been considered as a potential new anti-cancer strategy. However, it is unclear whether this activity is tumor-induced or species-specific, and no data are available regarding STMΔznuABC on canine mammary tumors (CMTs).
View Article and Find Full Text PDFVet Immunol Immunopathol
December 2024
Swine are considered one of the most relevant large animal biomedical models since they share many immunological similarities with humans. Despite that, macrophage polarization has not comprehensively investigated in pigs. In this study, porcine monocyte-derived macrophages (moMΦ) were untreated or stimulated with IFN-γ + LPS (classical activation), or by different M2 polarizing stimuli: IL-4, IL-10, TGF-β, or dexamethasone.
View Article and Find Full Text PDFIntroduction: Cancer is a leading cause of death in cats, and the rate of such disease has been increasing recently. Nonetheless, feline oncology represents an important area of study not only for the health and wellbeing of cats but also for human health since various types of cancer in cats share similarities to those found in humans. Therefore, epidemiological studies on feline oncology may suggest environmental and genetic factors contributing to cancer in cats, which can eventually be translated to improve human cancer care.
View Article and Find Full Text PDFSoft tissue sarcomas (STSs) represent a diverse group of tumors arising from mesenchymal cells, affecting both humans and animals, including dogs. Although STSs represent a class of rare tumors, especially in humans, they pose significant clinical challenges due to their potential for local recurrence and distant metastasis. Dogs, as a model for human STSs, offer several advantages, including exposure to similar environmental risk factors, genetic diversity among breeds, and the spontaneous development of tumors.
View Article and Find Full Text PDFCancer is a major cause of death in humans and animals worldwide. While cancer survival rates have increased over recent decades, further research to identify risk factors for the onset and progression of disease, and safe and highly efficacious treatments, is needed. Spontaneous tumours in pets represent an excellent model for neoplastic disease in humans.
View Article and Find Full Text PDFIntroduction: Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages.
Methods: In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays.
Papillomaviruses (PVs) are small, non-enveloped viruses, ubiquitous across the animal kingdom. PVs induce diverse forms of infection, such as cutaneous papillomas, genital papillomatosis, and carcinomas. During a survey on the fertility status of a mare, a novel PV (EcPV) has been identified using Next Generation Sequencing, and it was further confirmed with genome-walking PCR and Sanger sequencing.
View Article and Find Full Text PDFSwine are attracting increasing attention as a biomedical model, due to many immunological similarities with humans. However, porcine macrophage polarization has not been extensively analyzed. Therefore, we investigated porcine monocyte-derived macrophages (moMΦ) triggered by either IFN-γ + LPS (classical activation) or by diverse "M2-related" polarizing factors: IL-4, IL-10, TGF-β, and dexamethasone.
View Article and Find Full Text PDFPetroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation.
View Article and Find Full Text PDFPyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus . Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes' survival by mediating biofilm formation and virulence.
View Article and Find Full Text PDFThe contamination of coastal marine sediments with heavy metals (HMs) is a widespread phenomenon that requires effective remediation actions. Bioremediation based on the use of bacteria is an economically and environmentally sustainable effective strategy for reducing HM contamination and/or toxicity in marine sediments. However, information on the efficiency of marine-derived fungi for HM decontamination of marine sediments is still largely lacking, despite evidence of the performance of terrestrial fungal strains on other contaminated matrixes (e.
View Article and Find Full Text PDFOceanicaulis alexandrii strain NP7 is a marine bacterium which belongs to the Hyphomonadaceae family and was isolated from sediments highly contaminated with metals and polycyclic aromatic hydrocarbons released for decades by industrial activities in the Gulf of Naples (Mediterranean Sea). Here, we report the partial genome sequence and annotation of O. alexandrii strain NP7 that contains a chromosome of 2,954,327 bp and encodes for 2914 predicted coding sequences (CDSs) and 44 RNA-encoding genes.
View Article and Find Full Text PDFPetroleum hydrocarbons (PHCs) are one of the most widespread and heterogeneous organic contaminants affecting marine ecosystems. The contamination of marine sediments or coastal areas by PHCs represents a major threat for the ecosystem and human health, calling for urgent, effective, and sustainable remediation solutions. Aside from some physical and chemical treatments that have been established over the years for marine sediment reclamation, bioremediation approaches based on the use of microorganisms are gaining increasing attention for their eco-compatibility, and lower costs.
View Article and Find Full Text PDFHere, we report the draft genome sequence of a metagenome-assembled genome (MAG) of a new bacterium, NP8, of the family. This bacterium was isolated from polluted sediment collected from an abandoned industrial site located in the Gulf of Naples (Mediterranean Sea) as part of a microbial consortium.
View Article and Find Full Text PDFCoastal areas impacted by high anthropogenic pressures typically display sediment contamination by polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs). Microbial-based bioremediation represents a promising strategy for sediment reclamation, yet it frequently fails due to poor knowledge of the diversity and dynamics of the autochthonous microbial assemblages and to the inhibition of the target microbes in the contaminated matrix. In the present study, we used an integrated approach including a detailed environmental characterization, high-throughput sequencing and culturing to identify autochthonous bacteria with bioremediation potential in the sediments of Bagnoli-Coroglio (Gulf of Naples, Mediterranean Sea), a coastal area highly contaminated by PAHs, aliphatic hydrocarbons and HMs.
View Article and Find Full Text PDFInvestigations on the ability of bacteria to enhance removal of hydrocarbons and reduce heavy metal toxicity in sediments are necessary to design more effective bioremediation strategies. In this study, five bacterial strains, sp. SZN1, sp.
View Article and Find Full Text PDFThe persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity.
View Article and Find Full Text PDFPolyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.
View Article and Find Full Text PDFMany complications are associated to the therapeutic use of blood, among which are not only transfusion adverse events but also other issues such as lack of donors and high costs for collecting, testing, preserving, and distributing blood packages. Therefore, a clinically viable "blood substitute" is considered the holy grail of traumatology and may greatly benefit medicine. One of the most successful approaches to date is conjugating hemoglobin with polyethylene glycol (PEG).
View Article and Find Full Text PDF