The selective modification of nitrogen heteroaromatics enables the development of new chemical tools and accelerates drug discovery. While methods that focus on expanding or contracting the skeletal structures of heteroaromatics are emerging, methods for the direct exchange of single core atoms remain limited. Here, we present a method for N → N isotopic exchange for several aromatic nitrogen heterocycles.
View Article and Find Full Text PDFA method for the conversion of pyrimidines into pyrazoles by a formal carbon deletion has been achieved guided by computational analysis. The pyrimidine heterocycle is the most common diazine in FDA-approved drugs, and pyrazoles are the most common diazole. An efficient method to convert pyrimidines into pyrazoles would therefore be valuable by leveraging the chemistries unique to pyrimidines to access diversified pyrazoles.
View Article and Find Full Text PDF