Background: Water T of the liver has been shown to be promising in discriminating the progressive forms of fatty liver diseases, inflammation, and fibrosis, yet proper correction for iron and lipid is required.
Purpose: To examine the feasibility of an empirical approach for iron and lipid correction when measuring imaging-based T and to validate this approach by spectroscopy on in vivo data.
Study Type: Retrospective.
Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of genetic and metabolic alterations. Longitudinal imaging by MRI and [F]FET-PET measurements enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during tumor evolution in patients is not feasible because patients usually present with already established tumors.
View Article and Find Full Text PDFNon-invasive imaging of β-cells represents a desirable preclinical and clinical tool to monitor the change of β-cell mass and the loss of function during pre-diabetic stages. Although it is widely accepted that manganese (Mn) ions are actively gated by voltage-dependent calcium channels (VDCC) in response to glucose metabolism, little is known on its specificity for quantification of islet β-cell function using Mn and magnetic resonance imaging (MRI). On the other hand, glucagon-like-peptide-1 receptor (GLP-1R) represents a validated target for the estimation of β-cell mass using radiolabeled exendin-4 (Ex4) and positron emission tomography (PET).
View Article and Find Full Text PDFChemical exchange saturation transfer (CEST) is a novel contrast mechanism for magnetic resonance imaging (MRI). CEST MRI selectively saturates exchangeable protons that are transferred to MRI-detectable bulk water signal. MRI-CEST (pH)-responsive agents are probes able to map pH in the microenvironment in which they distribute.
View Article and Find Full Text PDF