Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S.
View Article and Find Full Text PDFActinobacteria have traditionally been an important source of bioactive natural products, although many genera remain poorly explored. Here, we report a group of distinctive pyrrole-containing natural products, named synnepyrroles, from . Detailed structural characterization by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy combined with isotope-labeling experiments revealed their molecular structures and biosynthetic precursors acetate, propionate, aspartate, and (for branched analogues) valine.
View Article and Find Full Text PDFSeveral metal-based carbon monoxide-releasing molecules (CORMs) are active CO donors with established antibacterial activity. Among them, CORM conjugates with azole antibiotics of type [Mn(CO)(2,2'-bipyridyl)(azole)] display important synergies against several microbes. We carried out a structure-activity relationship study based upon the lead structure of [Mn(CO)(Bpy)(Ctz)] by producing clotrimazole (Ctz) conjugates with varying metal and ligands.
View Article and Find Full Text PDFRhodomyrtone (Rom) is a plant-derived broad-spectrum antibiotic active against many Gram-positive pathogens. A single point mutation in the regulatory gene (*) confers resistance to Rom in Staphylococcus aureus (RomR). The mutation in * alters the activity of the regulator, FarR*, in such a way that not only its own gene, *, but also the divergently transcribed gene and genes controlled by the global regulator, , are highly upregulated.
View Article and Find Full Text PDFMembrane proteins act as a central interface between the extracellular environment and the intracellular response and as such represent one of the most important classes of drug targets. The characterization of the molecular properties of integral membrane proteins, such as topology and interdomain interaction, is key to a fundamental understanding of their function. Atomic force microscopy (AFM) and force spectroscopy have the intrinsic capabilities of investigating these properties in a near-native setting.
View Article and Find Full Text PDFStrong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer's disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation.
View Article and Find Full Text PDFHuman islet amyloid polypeptide (IAPP) is the major component of pancreatic amyloid deposits in type 2 diabetes. The structural conversion of IAPP from a monomeric state into amyloid assemblies is the subject of intense research. Recombinant production of IAPP is, however, difficult due to its extreme aggregation propensity.
View Article and Find Full Text PDFThere is strong evidence that the amyloid-beta peptide (Aβ) plays a central role in the pathogenesis of Alzheimer's disease (AD). In this context, a detailed quantitative description of the interactions with different Aβ species is essential for characterization of physiological and artificial ligands. However, the high aggregation propensity of Aβ in concert with its susceptibility to structural changes due to even slight changes in solution conditions has impeded surface plasmon resonance (SPR) studies with homogeneous Aβ conformer species.
View Article and Find Full Text PDFCompatible solutes are small, uncharged, zwitter ionic, osmotically active molecules produced and accumulated by microorganisms inside their cell to counteract different kinds of environmental stress. They enhance protein stability without interfering with the metabolic pathways even at molar concentrations. In this paper, we report the stabilizing effects of compatible solutes, ectoine, betaine and taurine on membrane protein bacteriorhodopsin at different concentrations.
View Article and Find Full Text PDFThe adaptive immunity of bacteria against foreign nucleic acids, mediated by CRISPR (clustered regularly interspaced short palindromic repeats), relies on the specific incorporation of short pieces of the invading foreign DNA into a special genomic locus, termed CRISPR array. The stored sequences (spacers) are subsequently used in the form of small RNAs (crRNAs) to interfere with the target nucleic acid. We explored the DNA-binding mechanism of the immunization protein Csn2 from the human pathogen Streptococcus agalactiae using different biochemical techniques, atomic force microscopic imaging and molecular dynamics simulations.
View Article and Find Full Text PDFMechanical single molecule techniques offer exciting possibilities for investigating protein folding and stability in native environments at sub-nanometer resolutions. Compatible solutes show osmotic activity which even at molar concentrations do not interfere with cell metabolism. They are known to protect proteins against external stress like temperature, high salt concentrations and dehydrating conditions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2011
Interaction forces of membrane protein subunits are of importance in their structure, assembly, membrane insertion, and function. In biological membranes, and in the photosynthetic apparatus as a paradigm, membrane proteins fulfill their function by ensemble actions integrating a tight assembly of several proteins. In the bacterial photosynthetic apparatus light-harvesting complexes 2 (LH2) transfer light energy to neighboring tightly associated core complexes, constituted of light-harvesting complexes 1 (LH1) and reaction centers (RC).
View Article and Find Full Text PDFScanning probe microscopy-based techniques can address and manipulate individual molecules. This makes it possible to use them for building nanostructures by assembling single molecules. Recently the formation of surface structures by positioning single molecules with the Atomic Force Microscope (AFM) was demonstrated on an irreversible delivery process.
View Article and Find Full Text PDFForce spectroscopy allows testing the free energy landscapes of molecular interactions. Usually, the dependency of the most probable rupture force on the force rate or the shape of the rupture force histogram is fitted with different models that contain approximations and basic assumptions. We present a simple and model free approach to extract the force-dependent dissociation rates directly from the force curve data.
View Article and Find Full Text PDFMicrobial rhodopsins are a family of seven-helical transmembrane proteins containing retinal as chromophore. Sensory rhodopsin II (SRII) triggers two very different responses upon light excitation, depending on the presence or the absence of its cognate transducer HtrII: Whereas light activation of the NpSRII/NpHtrII complex activates a signalling cascade that initiates the photophobic response, NpSRII alone acts as a proton pump. Using single-molecule force spectroscopy, we analysed the stability of NpSRII and its complex with the transducer in the dark and under illumination.
View Article and Find Full Text PDFCovalent chemisorption of biomolecules to surfaces with high density and low unspecific background is prerequisite for most optical and mechanical single molecule experiments and accordingly, many recipes have been developed. However, new establishment of the surface functionalization process in the lab usually is still difficult and time consuming due to the complex procedures containing many pitfalls. Therefore, based on the known recipes, we developed and optimized a simple straight forward protocol.
View Article and Find Full Text PDFWe present advances in the use of single-molecule FRET measurements with flexibly linked dyes to derive full 3D structures of DNA constructs based on absolute distances. The resolution obtained by this single-molecule approach harbours the potential to study in detail also protein- or damage-induced DNA bending. If one is to generate a geometric structural model, distances between fixed positions are needed.
View Article and Find Full Text PDFIn haloarchaea, sensory rhodopsin II (SRII) mediates a photophobic response to avoid photo-oxidative damage in bright light. Upon light activation the receptor undergoes a conformational change that activates a tightly bound transducer molecule (HtrII), which in turn by a chain of homologous reactions transmits the signal to the chemotactic eubacterial two-component system. Here, using single-molecule force spectroscopy, we localize and quantify changes to the intramolecular interactions within SRII of Natronomonas pharaonis (NpSRII) upon NpHtrII binding.
View Article and Find Full Text PDFA new general strategy based on the use of multiparameter fluorescence detection (MFD) to register and quantitatively analyse fluorescence images is introduced. Multiparameter fluorescence imaging (MFDi) uses pulsed excitation, time-correlated single-photon counting and a special pixel clock to simultaneously monitor the changes in the eight-dimensional fluorescence information (fundamental anisotropy, fluorescence lifetime, fluorescence intensity, time, excitation spectrum, fluorescence spectrum, fluorescence quantum yield, distance between fluorophores) in real time. The three spatial coordinates are also stored.
View Article and Find Full Text PDFThe kink-turn (k-turn), a new RNA structural motif found in the spliceosome and the ribosome, serves as a specific protein recognition element and as a structural building block. While the structure of the spliceosomal U4 snRNA k-turn/15.5K complex is known from a crystal structure, it is unclear whether the k-turn also exists in this folded conformation in the free U4 snRNA.
View Article and Find Full Text PDFThe combination of high-resolution atomic force microscopy imaging and single-molecule force spectroscopy allows the identification, selection, and mechanical investigation of individual proteins. In a recent paper we had used this technique to unfold and extract single bacteriorhodopsins (BRs) from native purple membrane patches. We show that subsets of the unfolding spectra can be classified and grouped to reveal detailed insight into the individualism of the unfolding pathways.
View Article and Find Full Text PDF