Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires knowledge of the spatial drivers of river microbiomes. However, understanding of the core microbial processes governing river biogeochemistry is hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we used a community science effort to accelerate the sampling, sequencing and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb).
View Article and Find Full Text PDFMotivation: The importance and rate of development of genome-scale metabolic models have been growing for the last few years, increasing the demand for software solutions that automate several steps of this process. However, since TRIAGE's release, software development for the automatic integration of transport reactions into models has stalled.
Results: Here, we present the Transport Systems Tracker (TranSyT).
Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb).
View Article and Find Full Text PDFSpontaneous reactions between metabolites are often neglected in favor of emphasizing enzyme-catalyzed chemistry because spontaneous reaction rates are assumed to be insignificant under physiological conditions. However, synthetic biology and engineering efforts can raise natural metabolites' levels or introduce unnatural ones, so that previously innocuous or nonexistent spontaneous reactions become an issue. Problems arise when spontaneous reaction rates exceed the capacity of a platform organism to dispose of toxic or chemically active reaction products.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFBiotechnol Biofuels
September 2019
Background: One of the European Union directives indicates that 10% of all fuels must be bio-synthesized by 2020. In this regard, biobutanol-natively produced by clostridial strains-poses as a promising alternative biofuel. One possible approach to overcome the difficulties of the industrial exploration of the native producers is the expression of more suitable pathways in robust microorganisms such as .
View Article and Find Full Text PDFMetabolism has been a major field of study in the last years, mainly due to its importance in understanding cell physiology and certain disease phenotypes due to its deregulation. Genome-scale metabolic models (GSMMs) have been established as important tools to help achieve a better understanding of human metabolism. Towards this aim, advances in systems biology and bioinformatics have allowed the reconstruction of several human GSMMs, although some limitations and challenges remain, such as the lack of external identifiers for both metabolites and reactions.
View Article and Find Full Text PDF