This study investigated the effects of increasing the intensity and/or duration of aerobic training sessions on thermoregulatory responses in rats subjected to exercises in temperate and warm environments. Thirty-two adult male Wistar rats were divided into four groups: a control (CON) group and three groups that were subjected to an 8-week aerobic training, during which the physical overload was achieved by predominantly increasing the exercise intensity (INT), duration (DUR) or by increasing both in an alternate manner (ID). During the last week of training, the rats received an abdominal sensor implant to measure their core body temperature (T) by telemetry.
View Article and Find Full Text PDFThis study investigated the effects of manipulating the load components of aerobic training sessions on the physical performance of rats. To achieve this purpose, adult male Wistar rats were divided into four groups: an untrained control (CON) group and training groups with a predominant overload in intensity (INT) or duration (DUR) or alternating and similar overloads in intensity and duration (ID). Prior to, during, and after 8 weeks of the control or training protocols, the performance of the rats (evaluated by their workload) was determined during fatiguing, incremental-speed treadmill running.
View Article and Find Full Text PDFThis study aimed to evaluate brain temperature (Tbrain) changes in spontaneously hypertensive rats (SHRs) subjected to two different physical exercise protocols in temperate or warm environments. We also investigated whether hypertension affects the kinetics of exercise-induced increases in Tbrain relative to the kinetics of abdominal temperature (Tabd) increases. Male 16-week-old normotensive Wistar rats (NWRs) and SHRs were implanted with an abdominal temperature sensor and a guide cannula in the frontal cortex to enable the insertion of a thermistor to measure Tbrain.
View Article and Find Full Text PDF