Publications by authors named "Filipa Guerreiro"

Pulmonary delivery of drugs is potentially beneficial in the context of lung disease, maximising drug concentrations in the site of action. A recent work proposed spray-dried konjac glucomannan (KGM) microparticles as antitubercular drug (isoniazid and rifabutin) carriers to treat pulmonary tuberculosis. The present work explores in vitro and in vivo effects of these microparticles, focusing on the ability for macrophage uptake, the exhibited antibacterial activity and safety issues.

View Article and Find Full Text PDF

The composition of seaweeds is complex, with vitamins, phenolic compounds, minerals, and polysaccharides being some of the factions comprising their structure. The main polysaccharide in brown seaweeds is fucoidan, and several biological activities have been associated with its structure. Chitosan is another marine biopolymer that is very popular in the biomedical field, owing to its suitable features for formulating drug delivery systems and, particularly, particulate systems.

View Article and Find Full Text PDF

Se in the form of sodium selenite was microencapsulated by spray - drying and added to a food matrix (yogurt) to study the potential improvement of its bioaccessibility. Yogurt samples were also supplemented with Se in free salt form. Se-loaded microparticles were successfully prepared by spray-drying with production yields above 70%.

View Article and Find Full Text PDF

Few medically-approved excipients are available for formulation strategies to endow microcarriers with improved performance in lung drug targeting. Konjac glucomannan (KGM) is a novel, biocompatible material, comprising mannose units potentially inducing macrophage uptake for the treatment of macrophage-mediated diseases. This work investigated spray-dried KGM microparticles as inhalable carriers of model antitubercular drugs, isoniazid (INH) and rifabutin (RFB).

View Article and Find Full Text PDF

Background And Purpose: The aim of this study was to determine the feasibility of hypofractionated schedules for metastatic bone/bone marrow lesions in children and to investigate dosimetric differences to the healthy surrounding tissues compared to conventional schedules.

Methods: 27 paediatric patients (mean age, 7 years) with 50 metastatic bone/bone marrow lesions (n = 26 cranial, n = 24 extra-cranial) from solid primary tumours (neuroblastoma and sarcoma) were included. The PTV was a 2 mm expansion of the GTV.

View Article and Find Full Text PDF

In this work, nanocomposites that combine mucopenetrating and mucoadhesive properties in a single system are proposed as innovative strategy to increase drug residence time in the intestine following oral administration. To this aim, novel mucoadhesive chitosan (CH) sponges loaded with mucopenetrating nanoemulsions (NE) were developed via freeze-casting technique. The NE mucopenetration ability was determined studying the surface affinity and thermodynamic binding of the nanosystem with mucins.

View Article and Find Full Text PDF

Purpose: To assess the feasibility of magnetic resonance imaging (MRI)-only treatment planning for photon and proton radiotherapy in children with abdominal tumours.

Materials And Methods: The study was conducted on 66 paediatric patients with Wilms' tumour or neuroblastoma (age 4 ± 2 years) who underwent MR and computed tomography (CT) acquisition on the same day as part of the clinical protocol. MRI intensities were converted to CT Hounsfield units (HU) by means of a UNet-like neural network trained to generate synthetic CT (sCT) from T1- and T2-weighted MR images.

View Article and Find Full Text PDF

Background And Purpose: To enable accurate magnetic resonance imaging (MRI)-based dose calculations, synthetic computed tomography (sCT) images need to be generated. We aim at assessing the feasibility of dose calculations from MRI acquired with a heterogeneous set of imaging protocol for paediatric patients affected by brain tumours.

Materials And Methods: Sixty paediatric patients undergoing brain radiotherapy were included.

View Article and Find Full Text PDF

A green extraction process using only water was proposed for the simultaneous extraction of alginate and bioactive compounds from . Operation was carried out during non-isothermal heating up to maximal temperatures over the range of 70 °C to 100 °C. Once separated, the alginate and the crude extract were characterised and the biological activities and cytotoxicity of the extracts was studied, the latter in intestinal epithelial cells.

View Article and Find Full Text PDF

Tuberculosis is a leading cause of death worldwide. Although the development of new antimycobacterial drugs is an obvious and necessary strategy to address the disease, improving the therapeutic performance of drugs already approved constitutes a valuable alternative approach. As the lung is the most affected organ, where M.

View Article and Find Full Text PDF

Background And Purpose: To evaluate the dosimetric sparing and robustness against inter-fraction anatomical changes between photon and proton dose distributions for children with abdominal tumors.

Material And Methods: Volumetric modulated arc therapy (VMAT) and intensity-modulated pencil beam scanning (PBS) proton dose distributions were calculated for 20 abdominal pediatric cases (average 3, range 1-8 years). VMAT plans were based on a full-arc while PBS plans on 2-3 posterior-oblique irradiation fields.

View Article and Find Full Text PDF

The purpose of this study was to develop a method enabling synthetic computed tomography (sCT) generation of the whole abdomen using magnetic resonance imaging (MRI) scans of pediatric patients with abdominal tumors. The proposed method relies on an automatic atlas-based segmentation of bone and lungs followed by an MRI intensity to synthetic Hounsfield unit conversion. Separate conversion algorithms were used for bone, lungs and soft-tissue.

View Article and Find Full Text PDF

Background And Purpose: To assess intra- and inter-fraction motion uncertainties, due to displacements of the tumor bed (TB) and organs at risk (OAR), as well as intra- and inter-fraction patient set-up uncertainties, due to positioning variations, during image-guided radiation therapy (IGRT) in children with Wilms' tumor.

Material And Methods: Four-dimensional computed tomography (4D-CT) and daily pre- and post-treatment cone-beam CT (CBCT)-scans of 15 patients (average 4, range 1-8 years) undergoing flank irradiation after nephrectomy were analyzed. TB (marked by four surgical clips) and OAR motion uncertainties were quantified by displacements of the center of mass in all orthogonal directions.

View Article and Find Full Text PDF

Despite the existence of effective oral therapy, tuberculosis remains a deadly pathology, namely because of bacterial resistance and incompliance with treatments. Establishing alternative therapeutic approaches is urgently needed and inhalable therapy has a great potential in this regard. As pathogenic bacteria are hosted by alveolar macrophages, the co-localisation of antitubercular drugs and pathogens is thus potentiated by this strategy.

View Article and Find Full Text PDF

To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer.

View Article and Find Full Text PDF

Tuberculosis remains a major global health problem and alternative therapeutic approaches are needed. Considering the high prevalence of lung tuberculosis (80% of cases), the pulmonary delivery of antitubercular drugs in a carrier system capable of reaching the alveoli, being recognised and phagocytosed by alveolar macrophages (mycobacterium hosts), would be a significant improvement to current oral drug regimens. Locust bean gum (LBG) is a polysaccharide composed of galactose and mannose residues, which may favour specific recognition by macrophages and potentiate phagocytosis.

View Article and Find Full Text PDF