Publications by authors named "Filip Petronijevic"

We report herein an efficient, stereocontrolled, and chromatography-free synthesis of the novel broad spectrum antibiotic . The route features the construction of a functionalized tripeptide backbone, a high-yielding macrocyclization via a Pd-catalyzed Suzuki-Miyaura reaction, and the late-stage elaboration of key amide bonds with minimal stereochemical erosion. Through extensive reaction development and analytical understanding, these key advancements allowed the preparation of in 17 steps, 15% overall yield, >99 A % HPLC, and >99:1 dr.

View Article and Find Full Text PDF

A direct β-coupling of cyclic ketones with imines has been accomplished via the synergistic combination of photoredox catalysis and organocatalysis. Transient β-enaminyl radicals derived from ketones via enamine and oxidative photoredox catalysis readily combine with persistent α-amino radicals in a highly selective hetero radical-radical coupling. This novel pathway to γ-aminoketones is predicated upon the use of DABCO as both a base and an electron transfer agent.

View Article and Find Full Text PDF

The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency.

View Article and Find Full Text PDF

The direct β-coupling of cyclic ketones with aryl ketones has been achieved via the synergistic combination of photoredox catalysis and organocatalysis. Diaryl oxymethyl or aryl-alkyl oxymethyl radicals, transiently generated via single-electron reduction of ketone precursors, readily merge with β-enaminyl radical species, generated by photon-induced enamine oxidation, to produce γ-hydroxyketone adducts. Experimental evidence indicates that two discrete reaction pathways can be operable in this process depending upon the nature of the ketyl radical precursor and the photocatalyst.

View Article and Find Full Text PDF

Novel routes to the naturally occurring indole alkaloid cycloclavine and its unnatural C(5)-epimer are described. Key features include the rapid construction of the heterocyclic core segments by two Diels-Alder reactions. An indole annulation was accomplished by a late-stage intramolecular Diels-Alder furan cycloaddition, and a methylenecyclopropane dienophile was used for a stereoselective intramolecular [4 + 2] cycloaddition to give the cyclopropa[c]indoline building block present in cycloclavine.

View Article and Find Full Text PDF

The key steps of a versatile new protocol for the convergent synthesis of 3,4-disubstituted indoles are the addition of an alpha-lithiated alkylaminofuran to a carbonyl compound, a microwave-accelerated intramolecular Diels-Alder cycloaddition and an in situ double aromatization reaction.

View Article and Find Full Text PDF