Publications by authors named "Filip Moldan"

Temporal trends for concentrations of mercury (Hg), lead (Pb) and cadmium (Cd) were evaluated from year 2000-2020 in 20 (Hg), 23 (Pb) and 11 (Cd) watercourses in remote forest catchments in Europe. Decreasing trends were observed in 15% (Hg), 39% (Pb) and 45% (Cd) of the watercourses during the period of evaluation. Decreasing trends were mainly observed between 2000 and 2005 for Hg and between 2000 and 2015 for Pb and Cd.

View Article and Find Full Text PDF

The riverine dissolved organic carbon (DOC) flux is of similar magnitude to the terrestrial sink for atmospheric CO, but the factors controlling it remain poorly determined and are largely absent from Earth system models (ESMs). Here, we show, for a range of European headwater catchments, that electrolyte solubility theory explains how declining precipitation ionic strength (IS) has increased the dissolution of thermally moderated pools of soluble soil organic matter (OM), while hydrological conditions govern the proportion of this OM entering the aquatic system. Solubility will continue to rise exponentially with declining IS until pollutant ion deposition fully flattens out under clean air policies.

View Article and Find Full Text PDF

The target load concept is an extension of the critical load concept of air pollution inputs to ecosystems. The advantage of target loads over critical loads is that one can define the deposition and the point in time (target year) when the critical (chemical) limit is no longer violated. This information on the timing of recovery requires dynamic modeling.

View Article and Find Full Text PDF

During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years. The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers.

View Article and Find Full Text PDF

Chronic high deposition of nitrogen (N) to forest ecosystems can lead to increased leaching of inorganic N to surface waters, enhancing acidification and eutrophication. For 26 years nitrogen has been added as ammonium nitrate (NHNO) at 40 kg N ha yr to a whole forested catchment ecosystem at Gårdsjön, Sweden, to experimentally simulate the transition from a N-limited to N-rich state. Over the first 10 years of treatment there was an increasing amount of nitrate (NO) and to a lesser extent ammonium (NH) lost in runoff, but then N leaching stabilised, and for the subsequent 16 years the fraction of N added lost in runoff remained at 9%.

View Article and Find Full Text PDF

Across much of the northern hemisphere, lakes are at risk of re-acidification due to incomplete recovery from historical acidification and pressures associated with more intensive forest biomass harvesting. Critical load (CL) calculations aimed at estimating the amount of pollutants an ecosystem can receive without suffering adverse consequences are dependent on these factors. Here, we present a modelling study of the potential effects of intensified forest harvesting on re-acidification of a set of 3239 Swedish lakes based on scenarios with varying intensities of forest biomass harvest and acid deposition.

View Article and Find Full Text PDF
Article Synopsis
  • In 1999, the MAGIC model was used to predict the acidification of European surface waters for 2010, based on the implementation of the Gothenburg Protocol aimed at reducing air pollution.
  • The study involved 202 sites across 10 European regions and compared model forecasts with actual 2010 measurements to evaluate the model's accuracy.
  • Results indicated that while sulfur deposition decreased as expected, nitrogen did not decline to the same extent; however, the model successfully predicted water recovery from acidification largely due to reduced sulfur levels.
View Article and Find Full Text PDF

Quantifying the effects of human activity on the natural environment is dependent on credible estimates of reference conditions to define the state of the environment before the onset of adverse human impacts. In Europe, emission controls that aimed at restoring ecological status were based on hindcasts from process-based models or paleolimnological reconstructions. For instance, 1860 is used in Europe as the target for restoration from acidification concerning biological and chemical parameters.

View Article and Find Full Text PDF

Decades of acid deposition have caused acidification of lakes in Sweden. Here we use data for 3000 lakes to run the acidification model MAGIC and estimate historical and future acidification. The results indicate that beginning in about 1920 a progressively larger number of lakes in Sweden fell into the category of "not naturally acidified" (∆pH > 0.

View Article and Find Full Text PDF

Short-term variability in stream water dissolved organic carbon (DOC) concentrations is controlled by hydrology, climate and atmospheric deposition. Using the Riparian flow-concentration Integration Model (RIM), we evaluated factors controlling stream water DOC in the Swedish Integrated Monitoring (IM) catchments by separating out hydrological effects on stream DOC dynamics. Model residuals were correlated with climate and deposition-related drivers.

View Article and Find Full Text PDF

The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gårdsjön, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha(-1) yr(-1) as NH(4)NO(3) to the ambient 9 kg N ha(-1) yr(-1) in fortnightly doses by means of sprinkling system.

View Article and Find Full Text PDF

Two fundamentally different approaches to define reference conditions for acidification assessments are hydrogeochemical modeling and paleolimnological reconstructions. Both methods have been applied to calculate the preindustrial chemistry for 55 Swedish lakes in two independent studies. This paper investigates whether these methods give similar reconstructions of the preindustrial pH for these lakes.

View Article and Find Full Text PDF

While SO4(2-) concentrations in runoff are decreasing in many catchments in Europe, present day S output still exceeds the S input for most forested catchments in Europe and North America. Here we report that a large part of the observed SO4(2-) in the runoff at a large-scale catchment study site (the Gårdsjön roof experiment in southwestern Sweden) originates from the organic S pool in the O horizon. Budget estimates comparing soil S pools showed reductions in the S pool of 57 mmol of S m(-2) in the O horizon and 26 mmol of SO4(2-) m(-2) in the mineral Bs horizon after excluding anthropogenic deposition for four years.

View Article and Find Full Text PDF

Dynamic models complement existing time series of observations and static critical load calculations by simulating past and future development of chemistry in forest and lake ecosystems. They are used for dynamic assessment of the acidification and to produce target load functions, that describe what combinations of nitrogen and sulfur emission reductions are needed to achieve a chemical or biological criterion in a given target year. The Swedish approach has been to apply the dynamic acidification models MAGIC, to 133 lakes unaffected by agriculture and SAFE, to 645 productive forest sites.

View Article and Find Full Text PDF

The reduced emissions of acidifying sulfur and nitrogen in Europe since the late 1970s will be further reduced when the Gothenburg protocol is fully implemented by 2010. Here we address the consequences for the recovery of acidified terrestrial ecosystems using the acidification model MAGIC applied to 3 large-scale "clean rain" experiments, the so-called roof experiments at Risdalsheia, Norway; Gårdsjön, Sweden, and Klosterhede, Denmark. Implementation of the Gothenburg protocol will initiate recovery of the soils at all 3 sites by rebuilding base saturation.

View Article and Find Full Text PDF

The geochemical model MAGIC was applied to estimate streamwater and soil chemistry between 1851 and 2030 at the Lysina catchment, an acid-sensitive granitic catchment covered by planted Norway spruce monoculture in the western Czech Republic. The total deposition of sulfur to the catchment was 164 meq m(-2) in 1991, but had declined to 52 meq m(-2) by 2000. Although SO2 emissions in the region declined by 90% compared to the 1980s, acidification recovery was small within the period 1990-2000.

View Article and Find Full Text PDF