Glioma cells release cytokines to stimulate inflammation that facilitates cell proliferation. Here, we show that Lipopolysaccharide (LPS) treatment could induce glioma cells to proliferate and this process was dependent on nucleotide receptor activation as well as interleukin-8 (IL-8/CXCL8) secretion. We observed that extracellular nucleotides controlled IL-8/CXCL8 and monocyte chemoattractant protein 1 (MCP-1/CCL2) release by U251MG and U87MG human glioma cell lines via P2X7 and P2Y6 receptor activation.
View Article and Find Full Text PDFInterleukin-8 (IL-8) plays key roles in both chronic inflammatory diseases and tumor modulation. We previously observed that IL-8 secretion and function can be modulated by nucleotide (P2) receptors. Here we investigated whether IL-8 release by intestinal epithelial HT-29 cells, a cancer cell line, is modulated by extracellular nucleotide metabolism.
View Article and Find Full Text PDFIn this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.
View Article and Find Full Text PDFPurinergic Signal
December 2011
Extracellular nucleotides and adenosine play important roles in inflammation. These signaling molecules interact with the cell-surface-located P2 and P1 receptors, respectively, that are widely distributed in the central nervous system and generally exert opposite effects on immune responses. Indeed, extracellular ATP, ADP, UTP, and UDP serve as alarmins or damage-associated molecular patterns that activate mainly proinflammatory mechanisms, whereas adenosine has potent anti-inflammatory and immunosuppressive effects.
View Article and Find Full Text PDFThe ectonucleotidase NTPDase1 (CD39) terminates P2 receptor activation by the hydrolysis of extracellular nucleotides (i.e., the P2 receptor ligands).
View Article and Find Full Text PDFP2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes.
View Article and Find Full Text PDFExtracellular nucleotides and adenosine regulate endocrine pancreatic functions such as insulin secretion by Langerhans islet β-cells via the activation of specific P2 and P1 receptors. Membrane-bound ectonucleotidases regulate the local concentration of these ligands and consequently control the activation of their receptors. The objective of this study was to identify and localize the major ectonucleotidases, namely NTPDases and ecto-5'-nucleotidase, present in the endocrine pancreas.
View Article and Find Full Text PDFExtracellular ATP and its hydrolysis product adenosine modulate various reproductive functions such as those requiring contraction, steroidogenesis, and maintenance of fluid composition. Interestingly, adenosine might act as a key capacitative effector for mammalian spermatozoa to acquire the capacity for fertilisation. Extracellular nucleotide levels are affected by cell surface ectonucleotidases, amongst which the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family regroups the most abundant and effective enzymes to hydrolyse ATP and ADP to AMP in physiological conditions.
View Article and Find Full Text PDFP2X7 receptor is an adenosine triphosphate (ATP)-gated ion channel within the multiprotein inflammasome complex. Until now, little is known about regulation of P2X7 effector functions in macrophages. In this study, we show that nucleoside triphosphate diphosphohydrolase 1 (NTPDase1)/CD39 is the dominant ectonucleotidase expressed by murine peritoneal macrophages and that it regulates P2X7-dependent responses in these cells.
View Article and Find Full Text PDFPrevious studies showed that P2 receptors are involved in neutrophil migration via stimulation of chemokine release and by facilitating chemoattractant gradient sensing. Here, we have investigated whether these receptors are involved in LPS-induced neutrophil transendothelial migration (TEM) using a Boyden chamber where neutrophils migrated through a layer of lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs). In line with a role of P2 receptors, neutrophil TEM was inhibited by the P2 receptor antagonists suramin and reactive blue 2 (RB-2) acting on the basolateral, but not luminal, HUVECs' P2 receptors.
View Article and Find Full Text PDFIn this work, we show that P2 nucleotide receptors control lipopolysaccharide (LPS)-induced neutrophil migration in the mouse air pouch model. Neutrophil infiltration in LPS-treated air pouches was reduced by the intravenous (iv) administration of the non-selective P2 receptor antagonist PPADS but not by suramin and RB-2. In addition, the iv administration of a P2 receptor ligand, UTP, enhanced LPS-induced neutrophil migration.
View Article and Find Full Text PDFExtracellular nucleotides regulate a variety of cellular responses involved in inflammation via the activation of P2 receptors. Here, we show that nucleotides regulate TLR2-induced neutrophil migration both in vivo and in vitro. The nucleotide scavenger apyrase inhibited neutrophil recruitment in murine air pouches injected with the TLR2 agonist Pam(3)CSK(4).
View Article and Find Full Text PDFThe chemokine interleukin 8 (IL-8) is a major chemoattractant for human neutrophils. Here, we demonstrate novel evidence that IL-8-induced neutrophil chemotaxis requires a concurrent activation of P2 receptors, most likely the P2Y(2) which is dominantly expressed in these cells. Indeed, the migration of human neutrophils towards IL-8 was significantly inhibited by the P2Y receptor antagonists, suramin and reactive blue 2 (RB-2) and potentiated by a P2Y(2) ligand, ATP, but insensitive to specific antagonists of P2Y(1), P2Y(6) and P2Y(11) receptors.
View Article and Find Full Text PDFThe plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase)-1, 2, 3 and 8 are major ectonucleotidases that modulate P2 receptor signaling by controlling nucleotides' concentrations at the cell surface. In this report, we systematically evaluated the effect of the commonly used P2 receptor antagonists reactive blue 2, suramin, NF279, NF449 and MRS2179, on recombinant human and mouse NTPDase1, 2, 3 and 8. Enzymatic reactions were performed in a Tris/calcium buffer, commonly used to evaluate NTPDase activity, and in a more physiological Ringer modified buffer.
View Article and Find Full Text PDFExtracellular nucleotides are emerging as important inflammatory mediators. Here, we demonstrate that these molecules mediate LPS-induced neutrophil migration in vitro and in vivo. Apyrase, a nucleotide scavenger, reduced the ability of LPS-stimulated monocytes to recruit neutrophils, as assayed using a modified Boyden chamber.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2007
Extracellular nucleotides regulate critical liver functions via the activation of specific transmembrane receptors. The hepatic levels of extracellular nucleotides, and therefore the related downstream signaling cascades, are modulated by cell-surface enzymes called ectonucleotidases, including nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2/CD39L1, and ecto-5'-nucleotidase/CD73. The goal of this study was to determine the molecular identity of the canalicular ecto-ATPase/ATPDase that we hypothesized to correspond to the recently cloned NTPDase8.
View Article and Find Full Text PDFWe have investigated the metabolism of extracellular adenine nucleotides and adenosine in porcine brain. The cortex synaptic plasma membranes hydrolyzed ATP to ADP, AMP and adenosine. We also observed a slow hydrolysis of adenosine with the concomitant accumulation of inosine.
View Article and Find Full Text PDFWe have cloned and characterized the nucleoside triphosphate diphosphohydrolase-3 (NTPDase3) from mouse spleen. Analysis of cDNA shows an open reading frame of 1587 base pairs encoding a protein of 529 amino acids with a predicted molecular mass of 58953Da and an estimated isoelectric point of 5.78.
View Article and Find Full Text PDFA novel mammalian plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase), named NTPDase8, has been cloned and characterized. Analysis of cDNA reveals an open reading frame of 1491 base pairs encoding a protein of 497 amino acid residues with an estimated molecular mass of 54650 Da and a predicted isoelectric point of 5.94.
View Article and Find Full Text PDFWe purified to homogeneity and characterized NTPDase1 and NTPDase2 from porcine brain cortex synaptosomes. SDS/PAGE and immunoblotting with antibodies specific to these enzymes revealed a molecular mass estimated at 72 kDa for NTPDase1 and 66 for NTPDase2. Both enzymes exhibited kinetic properties typical for all members of the NTPDase family, e.
View Article and Find Full Text PDF