Cochlear implants are crucial for addressing severe-to-profound hearing loss, with the success of the procedure requiring careful electrode placement. This scoping review synthesizes the findings from 125 studies examining the factors influencing insertion forces (IFs) and intracochlear pressure (IP), which are crucial for optimizing implantation techniques and enhancing patient outcomes. The review highlights the impact of variables, including insertion depth, speed, and the use of robotic assistance on IFs and IP.
View Article and Find Full Text PDFAs the first clinically translated machine-neural interface, cochlear implants (CI) have demonstrated much success in providing hearing to those with severe to profound hearing loss. Despite their clinical effectiveness, key drawbacks such as hearing damage, partly from insertion forces that arise during implantation, and current spread, which limits focussing ability, prevent wider CI eligibility. In this review, we provide an overview of the anatomical and physical properties of the cochlea as a resource to aid the development of accurate models to improve future CI treatments.
View Article and Find Full Text PDFBiosensors (Basel)
November 2022
(1) Background: During a cochlear implant insertion, the mechanical trauma can cause residual hearing loss in up to half of implantations. The forces on the cochlea during the insertion can lead to this mechanical trauma but can be highly variable between subjects which is thought to be due to differing anatomy, namely of the scala tympani. This study presents a systematic investigation of the influence of different geometrical parameters of the scala tympani on the cochlear implant insertion force.
View Article and Find Full Text PDF