Publications by authors named "Filip Delvaux"

The objective of this study was to develop a technique for analysing 14 flavour components, relevant for specialty malts. Therefore, a method was developed for the analysis of these components in dry ground malt using headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. A procedure was optimised for the optimal amount of sample, fibre selection, extraction temperature and extraction time.

View Article and Find Full Text PDF

An electronic tongue (ET) comprising 18 potentiometric chemical sensors was applied to the quantitative analysis of beer. Fifty Belgian and Dutch beers of different types were measured using the ET. The same samples were analyzed using conventional analytical techniques with respect to the main physicochemical parameters.

View Article and Find Full Text PDF

The flavor profile of beer is subject to changes during storage. Since, possibly, yeast has an influence on flavor stability, the aim of this study was to examine if there is a direct impact of brewing yeast on aged aroma. This was achieved by refermentation of aged beers.

View Article and Find Full Text PDF

The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e. higher inoculum size).

View Article and Find Full Text PDF

The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St.

View Article and Find Full Text PDF

Headspace solid-phase microextraction (SPME) followed by gas chromatography and mass spectrometry was applied for quantification of 41 chemically diverse carbonyl compounds in beer. Therefore, in-solution derivatisation with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) combined with SPME was optimised for fibre selection, PFBHA concentration, extraction temperature and time and ionic strength. Afterwards, the method was calibrated and validated successfully and extraction efficiency was compared to sampling with on-fibre derivatisation.

View Article and Find Full Text PDF

Yeast preoxygenation can confer important advantages to brewery fermentations by means of omitting the need to oxygenate the wort. However, the impact of yeast preoxygenation on yeast metabolism has never been assessed systematically. Therefore, expression analysis was performed of genes that are of importance in oxygen-dependent pathways, oxidative stress response and general stress response during 8 h of preoxygenation.

View Article and Find Full Text PDF

In this study the decrease of 4-vinylguaiacol (4VG) during beer aging was investigated and the products that arise from it were identified. Two compounds, vanillin and apocynol, were identified in beer model solutions after forced aging and in naturally aged beers by GC-MS and HPLC-ECD analyses. Both account for up to 85% of the decrease of 4VG.

View Article and Find Full Text PDF

The release and evaporation of volatile compounds was studied during boiling of wort. The observed parameters were boiling time, boiling intensity, wort pH, and wort density. The effect of every parameter was discussed and approached chemically, with an eye on beer-aging processes.

View Article and Find Full Text PDF

Headspace solid-phase microextraction combined with gas chromatography and mass spectrometry was used for the quantification of 32 volatiles which represent the typical chemical reactions that can occur during beer ageing. Detection was accomplished by employing on-fibre derivatisation using o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and normal HS-SPME extraction. The procedures were optimised for SPME fibre selection, PFBHA loading temperature and time, extraction temperature and time, and effect of salt addition.

View Article and Find Full Text PDF

The aim of this study was to create a simple, solventless technique without derivatisation in order to analyze a broad range of volatiles in beer wort. A method was developed using headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. The procedure was optimised by selection of the appropriate fibre and optimisation of extraction temperature, extraction time, and salting-out.

View Article and Find Full Text PDF

The volatile fraction of wort components was studied during boiling. Not less than 118 volatile compounds were identified when unhopped pilsner wort was boiled and samples of wort and condensed vapors were analyzed with headspace SPME-GC/MS, of which 54 were confirmed with reference compounds. The wort samples contained 61 identifiable compounds, while the vapor condensate yielded 108 different compounds.

View Article and Find Full Text PDF

Volatile phenols have long been recognized as important flavor contributors to the aroma of various alcoholic beverages. The two main flavor-active volatile phenols in beer are 4-vinylguaiacol and 4-vinylphenol. They are the decarboxylation products of the precursors ferulic acid and p-coumaric acid, respectively, which are released during the brewing process, mainly from malt.

View Article and Find Full Text PDF

The suitability of a simple and rapid isocratic RP-HPLC method with amperometric electrochemical detection for the simultaneous detection and quantification of hydroxycinnamic acids and their corresponding aroma-active volatile phenols in wort and beer is reported. The technique gives good specificity and sensitivity, and can therefore be used for routine monitoring of hydroxycinnamic acids in wort and the development of volatile phenolic flavour compounds during the beer production process and subsequent conservation.

View Article and Find Full Text PDF

In several yeast-related industries, continuous fermentation systems offer important economical advantages in comparison with traditional systems. Fermentation rates are significantly improved, especially when continuous fermentation is combined with cell immobilization techniques to increase the yeast concentration in the fermentor. Hence the technique holds a great promise for the efficient production of fermented beverages, such as beer, wine and cider as well as bio-ethanol.

View Article and Find Full Text PDF

The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt.

View Article and Find Full Text PDF