Phylogeographic analyses aim to extract information about pathogen spread from genomic data, and visualising spatio-temporal reconstructions is a key aspect of this process. Here we present SPREAD 4, a feature-rich web-based application that visualises estimates of pathogen dispersal resulting from Bayesian phylogeographic inference using BEAST on a geographic map, offering zoom-and-filter functionality and smooth animation over time. SPREAD 4 takes as input phylogenies with both discrete and continuous location annotation and offers customised visualisation as well as generation of publication-ready figures.
View Article and Find Full Text PDFThe 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations.
View Article and Find Full Text PDFPhylodynamic reconstructions rely on a measurable molecular footprint of epidemic processes in pathogen genomes. Identifying the factors that govern the tempo and mode by which these processes leave a footprint in pathogen genomes represents an important goal towards understanding infectious disease evolution. Discriminating between synonymous and non-synonymous substitution rates is crucial for testing hypotheses about the sources of evolutionary rate variation.
View Article and Find Full Text PDFVarious factors determine the rate at which mutations are generated and fixed in viral genomes. Viral evolutionary rates may vary over the course of a single persistent infection and can reflect changes in replication rates and selective dynamics. Dedicated statistical inference approaches are required to understand how the complex interplay of these processes shapes the genetic diversity and divergence in viral populations.
View Article and Find Full Text PDFSince its isolation in 1966 in Kenya, rice yellow mottle virus (RYMV) has been reported throughout Africa resulting in one of the economically most important tropical plant emerging diseases. A thorough understanding of RYMV evolution and dispersal is critical to manage viral spread in tropical areas that heavily rely on agriculture for subsistence. Phylogenetic analyses have suggested a relatively recent expansion, perhaps driven by the intensification of agricultural practices, but this has not yet been examined in a coherent statistical framework.
View Article and Find Full Text PDFModel-based phylogenetic reconstructions increasingly consider spatial or phenotypic traits in conjunction with sequence data to study evolutionary processes. Alongside parameter estimation, visualization of ancestral reconstructions represents an integral part of these analyses. Here, we present a complete overhaul of the spatial phylogenetic reconstruction of evolutionary dynamics software, now called SpreaD3 to emphasize the use of data-driven documents, as an analysis and visualization package that primarily complements Bayesian inference in BEAST (http://beast.
View Article and Find Full Text PDFSwine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood.
View Article and Find Full Text PDFBackground: Simulated nucleotide or amino acid sequences are frequently used to assess the performance of phylogenetic reconstruction methods. BEAST, a Bayesian statistical framework that focuses on reconstructing time-calibrated molecular evolutionary processes, supports a wide array of evolutionary models, but lacked matching machinery for simulation of character evolution along phylogenies.
Results: We present a flexible Monte Carlo simulation tool, called πBUSS, that employs the BEAGLE high performance library for phylogenetic computations to rapidly generate large sequence alignments under complex evolutionary models.
Molecular phylogenetic and phylogeographic reconstructions generally assume time-homogeneous substitution processes. Motivated by computational convenience, this assumption sacrifices biological realism and offers little opportunity to uncover the temporal dynamics in evolutionary histories. Here, we propose an evolutionary approach that explicitly relaxes the time-homogeneity assumption by allowing the specification of different infinitesimal substitution rate matrices across different time intervals, called epochs, along the evolutionary history.
View Article and Find Full Text PDFInformation on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard epidemiological data alone. Evolutionary analyses of pathogen genome sequences increasingly provide insights into the spatial dynamics of influenza viruses, but to date they have largely neglected the wealth of information on human mobility, mainly because no statistical framework exists within which viral gene sequences and empirical data on host movement can be combined.
View Article and Find Full Text PDFMotivation: Statistical methods for comparing relative rates of synonymous and non-synonymous substitutions maintain a central role in detecting positive selection. To identify selection, researchers often estimate the ratio of these relative rates (dN/dS) at individual alignment sites. Fitting a codon substitution model that captures heterogeneity in dN/dS across sites provides a reliable way to perform such estimation, but it remains computationally prohibitive for massive datasets.
View Article and Find Full Text PDFSummary: SPREAD is a user-friendly, cross-platform application to analyze and visualize Bayesian phylogeographic reconstructions incorporating spatial-temporal diffusion. The software maps phylogenies annotated with both discrete and continuous spatial information and can export high-dimensional posterior summaries to keyhole markup language (KML) for animation of the spatial diffusion through time in virtual globe software. In addition, SPREAD implements Bayes factor calculation to evaluate the support for hypotheses of historical diffusion among pairs of discrete locations based on Bayesian stochastic search variable selection estimates.
View Article and Find Full Text PDF