Struvite is a value-added by-product recovered from phosphorus-rich wastewater treatment by adding magnesium. Struvite is mainly used as slow-release fertilisers containing phosphate that can form insoluble salts with certain heavy metals. Hence, struvite may have potential application as a phosphate remediation agent for the immobilisation of heavy metals in contaminated soil, while the related study is limited.
View Article and Find Full Text PDFJ Environ Sci (China)
March 2022
Declining worldwide phosphate rock reserves has driven a growing interest in exploration of alternative phosphate supplies. This study involved phosphorus recovery from swine wastewater through precipitation of struvite, a valuable slow-release fertiliser. The economic feasibility of this process is highly dependent on the cost of magnesium source.
View Article and Find Full Text PDFPhosphorus recovery has attracted increasing interest due to the potential depletion of phosphorus resources. One promising solution is to recover phosphorus via struvite precipitation from wastewater or other waste that is in rich of phosphate. However, product quality control during such process is always challenging due to the variation and complexity of wastewater compositions.
View Article and Find Full Text PDFPolyfluoroalkyl and perfluoroalkyl substances (PFAS) are ecotoxic amphiphilic compounds containing alkyl-fluorinated chains terminated with weak acid moieties, and hence difficult to be degraded or removed from water sources. Direct contact membrane distillation (DCMD) was used for concentrating and removing of perfluoropentanoic acid (PFPeA) compounds from model contaminated water using commercially available poly (tetrafluoroethylene) (PTFE) membranes. The membranes were characterised for surface morphology, roughness, contact angle and pore size distribution before and after the DCMD test to investigate and evaluate membrane fouling.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2013
Aquaporin-based biomimetic membranes have potential as promising membranes for water purification and desalination due to the exceptionally high water permeability and selectivity of aquaporins. However, the design and preparation of such membranes for practical applications are very challenging as the relevant fundamental research is rather limited to provide guidance. Here we investigated the basic characteristics and fusion behaviour of proteoliposomes incorporated with aquaporin Z (AqpZ) on to solid surfaces.
View Article and Find Full Text PDFThis research focused on combined organic-inorganic fouling and cleaning studies of forward osmosis (FO) membranes. Various organic/inorganic model foulants such as sodium alginate, bovine serum albumin (BSA) and silica nanoparticles were applied to polyamide-polyethersulfone FO hollow fiber membranes fabricated in our laboratory. In order to understand all possible interactions, experiments were performed with a single foulant as well as combinations of foulants.
View Article and Find Full Text PDFEnviron Sci Technol
September 2010
This study describes the application of a noninvasive direct microscopic observation method for characterizing fouling of a forward osmosis (FO) membrane. The effect of the draw solution concentration, membrane orientation, and feed spacer on FO fouling was systematically investigated in a cross-flow setup using latex particles as model foulant in the feedwater. Higher draw solution (DS) concentrations (and thus increased flux levels) resulted in dramatic increase in the surface coverage by latex particles, suggesting that the critical flux concept might be applicable even for the osmotically driven FO process.
View Article and Find Full Text PDF