Background: Adaptive laboratory evolution (ALE) is an impactful technique for cultivating microorganisms to adapt to specific environmental circumstances or substrates through iterative growth and selection. This study utilized an adaptive laboratory evolution method on Lipomyces starkeyi for high tolerance in producing lignin derivative alcohols and lipids from syringaldehyde. Afterward, untargeted metabolomics analysis was employed to find the key metabolites that play important roles in the better performance of evolved strains compared to the wild type.
View Article and Find Full Text PDFProduction of terminal alkenes by microbes has gained importance due to its role as a chemical feedstock in commercial industries. Jeotgalicoccus species has been widely unexplored despite being well-known as a natural producer of terminal alkene, catalyzing the one-step fatty acid decarboxylation reaction by OleT cytochrome P450. In this study, widely targeted ion-pair LC-MS/MS was used to monitor central carbon metabolism of Jeotgalicoccus halotolerans JCM 5429, Jeotgalicoccus huakuii JCM 8176, and Jeotgalicoccus psychrophilus JCM 5429 at logarithmic and stationary phases.
View Article and Find Full Text PDF