Previous studies have shown that aggregated alpha-synuclein (α-s) protein, a key pathological marker of Parkinson's disease (PD), can propagate between cells, thus participating in disease progression. This prion-like propagation has been widely studied using in vivo and in vitro models, including rodent and human cell cultures. In this study, our focus was on temporal assessment of functional changes during α-s aggregation and propagation in human induced pluripotent stem cell (hiPSC)-derived neuronal cultures and in engineered networks.
View Article and Find Full Text PDFBackground: Neuronal networks receive and deliver information to regulate bodily functions while the vascular network provides oxygen, nutrients, and signaling molecules to tissues. Neurovascular interactions are vital for both tissue development and maintaining homeostasis in adulthood; these two network systems align and reciprocally communicate with one another. Although communication between network systems has been acknowledged, the lack of relevant in vitro models has hindered research at the mechanistic level.
View Article and Find Full Text PDFWe present a dataset of microelectrode array (MEA) recordings from human pluripotent stem cell (hPSC)-derived and rat embryonic cortical neurons during their in vitro maturation. The data were prepared to assess extracellularly recorded spontaneous activity and to compare the functional development of these neuronal networks. In addition to recordings of spontaneous activity, we provide pharmacological responses of hPSC-derived and rat cortical cultures at their mature stage.
View Article and Find Full Text PDFHuman pluripotent stem cell (hPSC)-derived neural cultures have attracted interest for modeling epilepsy and seizure-like activity in vitro. Clinical and experimental evidence have shown that the multifunctional inflammatory cytokine interleukin (IL)-6 plays a significant role in epilepsy. However, the role of IL-6 in neuronal networks remains unclear.
View Article and Find Full Text PDFBackground: Neuronal networks are routinely assessed based on extracellular electrophysiological microelectrode array (MEA) measurements by spike sorting, and spike and burst statistics. We propose to jointly analyze sorted spikes and detected bursts, and hypothesize that the obtained spike type compositions of the bursts can provide new information on the functional networks.
New Method: Spikes are detected and sorted to obtain spike types and bursts are detected.