Annu Rev Anal Chem (Palo Alto Calif)
January 2025
Mass spectrometry-based proteomics and metaproteomics have long been used in the study of human microbiomes, with the potential of metaproteomics only recently being fully harnessed. This progress is due to the advancements of high-performance mass spectrometers, innovative proteomics strategies, and the development of dedicated bioinformatics tools. In this review, we critically examine the recent technological developments that enhance the application of metaproteomics in clinical microbiome analysis.
View Article and Find Full Text PDFThe human body contains trillions of cells, classified into specific cell types, with diverse morphologies and functions. In addition, cells of the same type can assume different states within an individual's body during their lifetime. Understanding the complexities of the proteome in the context of a human organism and its many potential states is a necessary requirement to understanding human biology, but these complexities can neither be predicted from the genome, nor have they been systematically measurable with available technologies.
View Article and Find Full Text PDFThis study aims to evaluate the impact of experimental workflow on fecal metaproteomic observations, including the recovery of small and antimicrobial proteins often overlooked in metaproteomic studies. The overarching goal is to provide guidance for optimized metaproteomic experimental design, considering the emerging significance of the gut microbiome in human health, disease, and therapeutic interventions. Mouse feces were utilized as the experimental model.
View Article and Find Full Text PDFOur gut microbiome has its own functionalities which can be modulated by various xenobiotic and biotic components. The development and application of a high-throughput functional screening approach of individual gut microbiomes accelerates drug discovery and our understanding of microbiome-drug interactions. We previously developed the rapid assay of individual microbiome (RapidAIM), which combined an optimized culturing model with metaproteomics to study gut microbiome responses to xenobiotics.
View Article and Find Full Text PDFThe human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities.
View Article and Find Full Text PDFEmergent advancements on the role of the intestinal microbiome for human health and disease necessitate well-defined intestinal cellular models to study and rapidly assess host, microbiome, and drug interactions. Differentiated Caco-2 cell line is commonly utilized as an epithelial model for drug permeability studies and has more recently been utilized for investigating host-microbiome interactions. However, its suitability to study such interactions remains to be characterized.
View Article and Find Full Text PDFThe genome of a microorganism encodes its potential functions that can be implemented through expressed proteins. It remains elusive how a protein's selective expression depends on its metabolic essentiality to microbial growth or its ability to claim resources as ecological niches. To reveal a protein's metabolic or ecological role, we developed a computational pipeline, which pairs metagenomics and metaproteomics data to quantify each protein's gene-level and protein-level functional redundancy simultaneously.
View Article and Find Full Text PDFThe diversity and complexity of the microbiome's genomic landscape are not always mirrored in its proteomic profile. Despite the anticipated proteomic diversity, observed complexities of microbiome samples are often lower than expected. Two main factors contribute to this discrepancy: limitations in mass spectrometry's detection sensitivity and bioinformatics challenges in metaproteomics identification.
View Article and Find Full Text PDFThe human gut microbiome is closely associated with human health and diseases. Metaproteomics has emerged as a valuable tool for studying the functionality of the gut microbiome by analyzing the entire proteins present in microbial communities. Recent advancements in liquid chromatography and tandem mass spectrometry (LC-MS/MS) techniques have expanded the detection range of metaproteomics.
View Article and Find Full Text PDFThere is currently a growing interest in the use of nutraceuticals as a means of preventing the development of complex diseases. Given the considerable health potential of milk-derived peptides, the aim of this study was to investigate the protective effects of glycomacropeptide (GMP) on metabolic syndrome. Particular emphasis was placed on the potential mechanisms mitigating cardiometabolic disorders in high-fat, high-fructose diet-fed mice in the presence of GMP or Bipro, an isocaloric control.
View Article and Find Full Text PDFElevated mitochondrial metabolism promotes tumorigenesis of Embryonal Rhabdomyosarcomas (ERMS). Accordingly, targeting oxidative phosphorylation (OXPHOS) could represent a therapeutic strategy for ERMS. We previously demonstrated that genetic reduction of Staufen1 (STAU1) levels results in the inhibition of ERMS tumorigenicity.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2023
Metaproteomics has increasingly been applied to study functional changes in the human gut microbiome. Peptide identification is an important step in metaproteomics research, with sequence database search (SDS) and spectral library search (SLS) as the two main methods to identify peptides. However, the large search space in metaproteomics studies causes significant challenges for both identification methods.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
December 2024
The gut microbiome plays a critical role to all animals and humans health. Methods based on ex vivo cultures are time and cost-effective solutions for rapid evaluation of probiotic effects on microbiomes. In this study, we assessed whether the protein secretome from the potential probiotic Enterococcus durans LAB18S grown on fructoligosaccharides (FOS) and galactoligosaccharides (GOS) had specific effects on ex vivo cultured intestinal microbiome obtained from a healthy individual.
View Article and Find Full Text PDFMembrane cholesterol-rich domains have been shown to be important for regulating a range of membrane protein activities. Low-density lipoprotein receptor (LDLR)-mediated internalization of cholesterol-rich LDL particles is tightly regulated by feedback mechanisms involving intracellular sterol sensors. Since LDLR plays a role in maintaining cellular cholesterol homeostasis, we explore the role that membrane domains may have in regulating LDLR activity.
View Article and Find Full Text PDFBackground: Psychological health risk is one of the most severe and complex risks in manned deep-space exploration and long-term closed environments. Recently, with the in-depth research of the microbiota-gut-brain axis, gut microbiota has been considered a new approach to maintain and improve psychological health. However, the correlation between gut microbiota and psychological changes inside long-term closed environments is still poorly understood.
View Article and Find Full Text PDFMounting evidence points to causative or correlative roles of gut microbiome in the development of a myriad of diseases ranging from gastrointestinal diseases, metabolic diseases to neurological disorders and cancers. Consequently, efforts have been made to develop and apply therapeutics targeting the human microbiome, in particular the gut microbiota, for treating diseases and maintaining wellness. Here we summarize the current development of gut microbiota-directed therapeutics with a focus on novel biotherapeutics, elaborate the need of advanced -omics approaches for evaluating the microbiota-type biotherapeutics, and discuss the clinical and regulatory challenges.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia. The hippocampus, which is one of the sites where neural stem cells reside and new neurons are born, exhibits the most significant neuronal loss in AD. A decline in adult neurogenesis has been described in several animal models of AD.
View Article and Find Full Text PDFMultiplexed quantitative proteomics using tandem mass tag (TMT) is increasingly used in -omic study of complex samples. While TMT-based proteomics has the advantages of the higher quantitative accuracy, fewer missing values, and reduced instrument analysis time, it is limited by the additional reagent cost. In addition, current TMT labeling workflows involve repeated small volume pipetting of reagents in volatile solvents, which may increase the sample-to-sample variations and is not readily suitable for high throughput applications.
View Article and Find Full Text PDFThe studies of microbial communities have drawn increased attention in various research fields such as agriculture, environment, and human health. Recently, metaproteomics has become a powerful tool to interpret the roles of the community members by investigating the expressed proteins of the microbes. However, analyzing the metaproteomic data sets at genome resolution is still challenging because of the lack of efficient bioinformatics tools.
View Article and Find Full Text PDFButyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other.
View Article and Find Full Text PDF