Ratios of H(p)(10) and H*(10) were determined with reference instruments in a number of workplace fields within the nuclear industry and used to derive workplace-specific correction factors. When commercial survey meter results together with these factors were applied to the results of the locally used personal dosemeters their results improved and became within 0.7 and 1.
View Article and Find Full Text PDFWithin the EC project EVIDOS, 17 different mixed neutron-photon workplace fields at nuclear facilities (boiling water reactor, pressurised water reactor, research reactor, fuel processing, storage of spent fuel) were characterised using conventional Bonner sphere spectrometry and newly developed direction spectrometers. The results of the analysis, using Bayesian parameter estimation methods and different unfolding codes, some of them especially adapted to simultaneously unfold energy and direction distributions of the neutron fluence, showed that neutron spectra differed strongly at the different places, both in energy and direction distribution. The implication of the results for the determination of reference values for radiation protection quantities (ambient dose equivalent, personal dose equivalent and effective dose) and the related uncertainties are discussed.
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2008
Neutron survey instruments have been exposed at all the measurement locations used in the EVIDOS project. These results have an important impact in the interpretation of the results from the project, since operationally the survey instrument will be used for an initial assessment of and routine monitoring of the ambient dose equivalent dose rate. Additionally, since the response of these instruments is in some cases very well characterised, their systematic deviations from the reference quantities provide an important verification of the determination of those quantities.
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2008
The availability of active neutron personal dosemeters has made real time monitoring of neutron doses possible. This has obvious benefits, but is only of any real assistance if the dose assessments made are of sufficient accuracy and reliability. Preliminary assessments of the performance of active neutron dosemeters can be made in calibration facilities, but these can never replicate the conditions under which the dosemeter is used in the workplace.
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2008
In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given.
View Article and Find Full Text PDFSupported by the European Commission, the EVIDOS project started in November 2001 with the broad goal of evaluating state of the art dosimetry techniques in representative workplaces of the nuclear industry. Seven European institutes joined efforts with end users at nuclear power plants, at fuel processing and reprocessing plants, and at transport and storage facilities. A comprehensive programme was devised to evaluate capabilities and limitations of standard and innovative personal dosemeters in relation to the mixed neutron-photon fields of concern to the nuclear industry.
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2008
Within the EC project EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'), different types of active neutron personal dosemeters (and some passive ones) were tested in workplace fields at nuclear installations in Europe. The results of the measurements which have been performed up to now are summarised and compared to our currently best estimates of the personal dose equivalent Hp(10). Under- and over-readings by more than a factor of two for the same dosemeter in different workplace fields indicate that in most cases the use of field-specific correction factors is required.
View Article and Find Full Text PDFWithin the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.
View Article and Find Full Text PDFThe paper presents the main conclusions and recommendations derived from the EVIDOS project, which is supported by the European Commission within the 5th Framework Programme. EVIDOS aims at evaluating state of the art neutron dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This analysis complements a series of individual papers which present detailed results and it summarises the main findings from a practical point of view.
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2008
In the framework of the EVIDOS project, funded by the EC, measurements were carried out using dosemeters, based on ionisation chambers with direct ion storage (DIS-N), at several workplace fields, namely, at a fuel processing plant, a boiling and a pressurised water reactor, and near transport and storage casks. The measurements and results obtained with the DIS-N in these workplaces, which are representative for the nuclear industry, are described in this study. Different dosemeter configurations of converter and shielding materials were considered.
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2008
At the Paul Scherrer Institute a personal neutron dosimetry system based on chemically etched CR-39 detectors and automatic track counting is in routine use since the beginning of 1998. The quality of the CR-39 detectors has always been a crucial aspect to maintain a trustable personal neutron dosimetry system. This paper summarises the 7 y experience in routine use.
View Article and Find Full Text PDFEVIDOS is an EC sponsored project that aims at an evaluation and improvement of radiation protection dosimetry in mixed neutron/photon fields. This is performed through spectrometric and dosimetric investigations during different measurement campaigns in representative workplaces of the nuclear industry. The performance of routine and, in particular, novel personal dosemeters and survey instruments is tested in selected workplace fields.
View Article and Find Full Text PDFRadiat Prot Dosimetry
December 2006
This work describes spectral distributions of neutrons obtained as function of energy and direction at four workplace fields at the Krümmel reactor in Germany. Values of personal dose equivalent H(p)(10) and effective dose E are determined for different directions of a person's orientation in these fields and readings of personal neutron dosemeters--especially electronic dosemeters--are discussed with respect to H(p)(10) and E.
View Article and Find Full Text PDFRadiat Prot Dosimetry
December 2004
EVIDOS ('evaluation of individual dosimetry in mixed neutron and photon radiation fields') is an European Commission (EC)-sponsored project that aims at a significant improvement of radiation protection dosimetry in mixed neutron/photon fields via spectrometric and dosimetric investigations in representative workplaces of the nuclear industry. In particular, new spectrometry methods are developed that provide the energy and direction distribution of the neutron fluence from which the reference dosimetric quantities are derived and compared to the readings of dosemeters. The final results of the project will be a comprehensive set of spectrometric and dosimetric data for the workplaces and an analysis of the performance of dosemeters, including novel electronic dosemeters.
View Article and Find Full Text PDFRadiat Prot Dosimetry
December 2004
In this paper the present status of the Direct Ion Storage Neutron (DIS-N) prototype dosemeter (RADOS) is described. The separation of neutron from photon dose equivalent has been improved by adding tin shieldings. The neutron energy response has been changed by additional plastic covers containing 40% B4C in order to reduce the over-response to thermal neutrons.
View Article and Find Full Text PDFThe purpose of this investigation is to measure the impact of Ti-alloy-prostheses on the neutron dose during proton and photon radiotherapy. Such unwanted neutron dose to the patient should be kept as low as possible (ALARA principle), as such additional dose can create secondary malignancies. For this purpose we performed neutron dose measurements using etch track detectors under the same conditions on a proton and a photon beam line used for radiotherapy.
View Article and Find Full Text PDFRadiat Prot Dosimetry
April 2003
The novel DIS-1 dosemeter developed by RADOS is based on ionisation chambers with so-called Direct Ion Storage (DIS). The dosemeter can measure Hp(10) and Hp(0.07) of photon and Hp(0.
View Article and Find Full Text PDFRadiat Prot Dosimetry
March 2002
Ionisation chambers are sensitive to both neutrons and photons. In order to produce a neutron dosemeter based on an ion chamber a double-chamber system which allows for differential readings has to be built. The system consists of one chamber with high neutron sensitivity (e.
View Article and Find Full Text PDFRadiat Prot Dosimetry
March 2002
The European Commission recently sponsored an international research and development project, in which three 'active' personal neutron dosemeters were developed. Comparative irradiation experiments showed good results with respect to sensitivity and energy dependence of the response.
View Article and Find Full Text PDF