Publications by authors named "Fidelis Zanetti de Castro"

In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associative hypercomplex number systems. Real-part associative hypercomplex number systems generalize the well-known Cayley-Dickson algebras and real Clifford algebras and include the systems of real numbers, complex numbers, dual numbers, hyperbolic numbers, quaternions, tessarines, and octonions as particular instances.

View Article and Find Full Text PDF

In this paper, we first address the dynamics of the elegant multivalued quaternionic Hopfield neural network (MV-QHNN) proposed by Minemoto et al. Contrary to what was expected, we show that the MV-QHNN, as well as one of its variation, does not always come to rest at an equilibrium state under the usual conditions. In fact, we provide simple examples in which the network yields a periodic sequence of quaternionic state vectors.

View Article and Find Full Text PDF