Enzymatic biocathodes have the potential to replace platinum as an expensive catalyst for the oxygen reduction reaction in microbial fuel cells (MFCs). However, enzymes are fragile and prone to loss of activity with time. This could be circumvented by using suitable immobilization techniques to maintain the activity and increase longevity of the enzyme.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2020
Microbial biocathodes are gaining interest due to their low cost, environmental friendliness and sustainable nature. In this study, a microbial consortium was enriched from activated sludge obtained from a common textile effluent treatment plant in the absence of organic carbon source to produce an electroactive biofilm. Chronoamperometry method of enrichment was carried out for over 70 days to select for electroactive bacteria that could be used as a cathode catalyst in microbial fuel cells (MFC).
View Article and Find Full Text PDFA new approach to deposition of electroactive ZnO thin films have been carried out, by one-pot chemical bath deposition with Al dopant and incorporation of neutral red as organic mediator. The morphological, structural and functional characterization of the neutral red incorporated, Al-doped ZnO (NR-AZO) film was carried out using electron microscopy, FTIR, XRD and EIS respectively. The incorporated neutral red was found to induce strain in the crystal of AZO proportional to the concentration used in depositing solution which further affected the charge transfer resistance of the films in solution.
View Article and Find Full Text PDFBiosensing of NADH on bare electrodes has drawbacks such as high over-potential and poisoning during the oxidation reaction. To overcome this challenge a different approach has been undertaken by incorporating neutral red (NR) in Al doped ZnO (AZO) thin films using one-pot chemical bath deposition (CBD). The surface morphology of the films was hexagonal nanorods along the c-axis, perpendicular to the substrate.
View Article and Find Full Text PDF