Publications by authors named "Fichthorn K"

Conventional polyol synthesis of silver nanowires has exclusively relied on polyvinylpyrrolidone (PVP), a nonbiodegradable polymer with no viable alternatives. The underlying reaction mechanism remains unclear. Herein, we discovered a new sustainable solution by employing biobased cellulose derivatives, including hydroxyethyl cellulose (HEC), as effective substitutes for PVP.

View Article and Find Full Text PDF

In this study, we present the development of a ReaxFF Pt/Cl/H reactive force field designed to elucidate the etching process by Cl for Pt surfaces. The ReaxFF force field parameters were optimized based on a quantum mechanical training set, which included adsorption energies of Cl and dissociation of HCl on Pt(100) and Pt(111) surfaces, energy/volume relations of PtCl crystals, and Cl diffusion on Pt(100) and Pt(111) surfaces. The predictive capability of the force field was further established through molecular dynamics simulations, which investigated the interactions of Cl and HCl molecules with the (100) and (111) surfaces of c-Pt crystalline solid slabs.

View Article and Find Full Text PDF

We use machine learning (ML) to classify the structures of mono-metallic Cu and Ag nanoparticles. Our datasets comprise a broad range of structures - both crystalline and amorphous - derived from parallel-tempering molecular dynamics simulations of nanoparticles in the 100-200 atom size range. We construct nanoparticle features using common neighbor analysis (CNA) signatures, and we utilize principal component analysis to reduce the dimensionality of the CNA feature set.

View Article and Find Full Text PDF

This study demonstrates the crucial role of reduction kinetics in phase-controlled synthesis of noble-metal nanocrystals using Ru nanocrystals as a case study. We found that the reduction kinetics played a more important role than the templating effect from the preformed seed in dictating the crystal structure of the deposited overlayers despite their intertwined effects on successful epitaxial growth. By employing two different polyols, a series of Ru nanocrystals with tunable sizes of 3-7 nm and distinct patterns of crystal phase were synthesized by incorporating different types of Ru seeds.

View Article and Find Full Text PDF
Article Synopsis
  • - We used parallel-tempering molecular dynamics simulations to explore how temperature and size affect the shapes of copper (Cu) nanocrystals with 100 to 200 atoms, finding that shape transitions happen often at different temperatures.
  • - Our calculations also revealed that the vibrational entropy encourages shapes that are between a decahedron and an icosahedron, suggesting that using minimum-energy calculations may not accurately reflect shapes at real-world temperatures.
  • - We noticed that even small size changes in nanocrystals, sometimes by just one atom, can lead to significant alterations in their shapes, which may help in developing methods for creating specific nanocrystal shapes.
View Article and Find Full Text PDF

Twin structures possess distinct physical and chemical properties by virtue of their specific twin configuration. However, twinning and detwinning processes are not fully understood on the atomic scale. Integrating high resolution transmission electron microscopy and molecular dynamic simulations, we find tensile strain in the asymmetrical 5-fold twins of Au nanoparticles leads to twin boundary migration through dislocation sliding (slipping of an atomic layer) along twin boundaries and dislocation reactions at the 5-fold axis under an electron beam.

View Article and Find Full Text PDF

We use two variants of replica-exchange molecular dynamics (MD) simulations, parallel tempering MD and partial replica exchange MD, to probe the minimum free-energy shapes of Ag nanocrystals containing 100-200 atoms in a vacuum, ethylene glycol (EG) solvent, and EG solvent with a PVP polymer containing 100 repeat units. Our simulations reveal a shape intermediate between a Dh and an Ih, a Dh-Ih, that has distinct structural signatures and magic sizes. We find several prominent features associated with entropy: pure FCC nanocrystals are less common than FCC crystals containing stacking faults, and crystals with the minimum potential energy are not always preferred over the range of relevant temperatures.

View Article and Find Full Text PDF

Crystals with penta-twinned structures can be produced from diverse fcc metals, but the mechanisms that control the final product shapes are still not well understood. By using the theory of absorbing Markov chains to account for the growth of penta-twinned decahedral seeds via atom deposition and surface diffusion, we predicted the formation of various types of products: decahedra, nanorods, and nanowires. We showed that the type of product depends on the morphology of the seed and that small differences between various seed morphologies can lead to significantly different products.

View Article and Find Full Text PDF

A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses.

View Article and Find Full Text PDF

Solution-phase synthesis of metal nanocrystals with multiple additives is a common strategy for control over nanocrystal shape, and thus control over their properties. However, few rules are available to predict the effect of multiple capping agents on metal nanocrystal shapes, making it hard to rationally design synthetic conditions. This work uses a combination of seed-mediated growth, single-crystal electrochemistry, and DFT calculations to determine the roles of PVP and Cl in the anisotropic growth of single-crystal and penta-twinned silver nanocrystals.

View Article and Find Full Text PDF

Nanoparticle assembly and attachment are common pathways of crystal growth by which particles organize into larger scale materials with hierarchical structure and long-range order. In particular, oriented attachment (OA), which is a special type of particle assembly, has attracted great attention in recent years because of the wide range of material structures that result from this process, such as one-dimensional (1D) nanowires, two-dimensional (2D) sheets, three-dimensional (3D) branched structures, twinned crystals, defects, etc. Utilizing in situ transmission electron microscopy techniques, researchers observed orientation-specific forces that act over short distances (∼1 nm) from the particle surfaces and drive the OA process.

View Article and Find Full Text PDF

Synthesizing metal nanoparticles with fine control of size, shape and surface properties is of high interest for applications such as catalysis, nanoplasmonics, and fuel cells. In this contribution, we demonstrate that the citrate-coated surfaces of palladium (Pd) and platinum (Pt)@Pd nanocubes with a lateral length <5 nm and low polydispersity in shape achieve superior catalytic properties. The synthesis achieves great control of the nanoparticle's physico-chemical properties by using only biogenic reagents and bromide ions in water while being fast, easy to perform and scalable.

View Article and Find Full Text PDF

Accelerated molecular-dynamics (MD) simulations based on hyperdynamics (HD) can significantly improve the efficiency of MD simulations of condensed-phase systems that evolve via rare events. However, such simulations are not generally easy to apply since appropriate boosts are usually unknown. In this work, we developed a method called OptiBoost to adjust the value of the boost in HD simulations based on the bond-boost method.

View Article and Find Full Text PDF

We use first-principles density functional theory (DFT) to quantify the role of iodide in the solution-phase growth of Cu microplates. Our calculations show that a Cu adatom binds more strongly to hcp hollow sites than fcc hollow sites on iodine-covered Cu(111) - the basal facet of two-dimensional (2D) Cu plates. This feature promotes the formation of stacking faults during seed and plate which, in turn, promotes 2D growth.

View Article and Find Full Text PDF

Penta-twinned metal nanowires are finding widespread application in existing and emerging technologies. However, little is known about their growth mechanisms. We probe the origins of chloride- and alkylamine-mediated, solution-phase growth of penta-twinned Cu nanowires from first-principles using multiscale theory.

View Article and Find Full Text PDF

We used dispersion-corrected density-functional theory to perform an search over a series of primary alkylamines, including linear, branched, and cyclic molecules, to identify capping molecules for shape-selective Cu nanocrystal synthesis. We identify several attributes associated with successful capping agents. Generally, molecules with good geometric matching to the Cu surfaces possessed the strongest molecule-surface chemical bonds.

View Article and Find Full Text PDF

The shape-controlled synthesis of Cu nanocrystals can benefit a wide range of applications, though challenges exist in achieving high and selective yields to a particular shape. Capping agents play a pivotal role in controlling shape, but their exact role remains ambiguous. In this study, the adsorption of ethylenediamine (EDA) on Cu(100) and Cu(111) was investigated with quantum density functional theory (DFT) to reveal the complex roles of EDA in promoting penta-twinned Cu nanowire growth.

View Article and Find Full Text PDF
Article Synopsis
  • Copper nanocrystals are shaped with the help of alkylamine capping agents, like tetradecylamine (TDA), but their exact role is not fully understood.
  • TDA forms a temperature-dependent bilayer structure around the Cu nanocrystal, with an inner layer binding to the surface and an outer layer that changes with temperature.
  • At low temperatures, the inner layer's TDA forms bundles and the outer layer aligns perpendicularly; at high temperatures, the inner layer loses its bundle structure, while the outer layer adopts a web-like formation, affecting the overall assembly.
View Article and Find Full Text PDF

In this feature article, we provide an account of the Langmuir Lecture delivered by Kristen Fichthorn at the Fall 2020 Virtual Meeting of the American Chemical Society. We discuss how multiscale theory and simulations based on first-principles DFT were useful in uncovering the intertwined influences of kinetics and thermodynamics on the shapes of Ag and Cu cubes and nanowires grown in solution. We discuss how Ag nanocubes can form through PVP-modified deposition kinetics and how the addition of chloride to the synthesis can promote thermodynamic cubic shapes for both Ag and Cu.

View Article and Find Full Text PDF

Green and scalable methodologies for the preparation of metal nanoparticles with fine control of shape and size are of high interest in many areas including catalysis, nanomedicine, and nanodiagnostics. In this contribution, we describe a new synthetic method for the production of palladium (Pd) penta-twinned nanowires and nanorods utilizing sodium citrate, formic acid, ascorbic acid, and potassium bromide (KBr) in water, without the use of surfactants or polymers. The synthesis is green, fast, and without the need of complex setups.

View Article and Find Full Text PDF

Metal nanocrystals are of considerable scientific interest because of their uses in electronics, catalysis, and spectroscopy, but the mechanisms by which nanocrystals nucleate and grow to achieve selective shapes are poorly understood. Ab initio calculations and experiments have consistently shown that the lowest energy isomers for small silver nanoparticles exhibit two-dimensional (2D) configurations and that a transition into three-dimensional (3D) configurations occurs with the addition of only a few atoms. We parameterized an e-ReaxFF potential for Ag nanoclusters (N ≤ 20 atoms) that accurately reproduces the 2D-3D transition observed between the Ag and Ag clusters.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations were used to study the effects of gravity, solid surface energy, and the fraction of water-solid interface area on the water droplet sliding angles on nanopillared surfaces. To effectively simulate the influence of gravity on drop sliding, we developed a protocol in which we scale the value of gravitational acceleration used in our simulations according to the Bond number (). In this way, we approximate the behavior of drops larger than we can effectively simulate using MD.

View Article and Find Full Text PDF